TTA, Telecommunications Technology Association, believes that all the information in this document is accurate as of the publication date. The information in this document is subject to change without notice. TTA, the sponsor of this benchmark test, assumes no responsibility for any errors that may appear in this document. The pricing information in this document is believed to accurately reflect the current prices as of the publication date. However, the sponsor provides no warranty of the pricing information in this document.

Benchmark results are highly dependent upon workload, specific application requirements, and system design and implementation. Relative system performance will vary as a result of these and other factors. Therefore, the TPC Benchmark™ C should not be used as a substitute for a specific customer application benchmark when critical capacity planning and/or product evaluation decisions are contemplated.

All performance data contained in this report was obtained in a rigorously controlled environment. Results obtained in other operating environments may vary significantly. No warranty of system performance or price/performance is expressed or implied in this report.

Trademarks

The following terms used in this publication are trademarks of other companies as follows:

- **TPC Benchmark, TPC-C, and tpmC** are trademarks of the Transaction Processing Performance Council
- **TTA** is a registered trademark of Telecommunications Technology Association
- **Goldilocks** is a registered trademark of SUNJESOFT, Inc.
- **JBoss** is a registered trademark of RedHat, Inc.
- **Intel and Intel Xeon** are trademarks or registered trademarks of Intel Corporation.
- **All other trademarks and copyrights are properties of their respective owners.**
Table of Contents

TABLE OF CONTENTS .. 3

ABSTRACT .. 5

PREFACE ... 6

GENERAL ITEMS... 11

0.1 APPLICATION CODE AND DEFINITION STATEMENTS .. 11
0.2 BENCHMARK SPONSOR .. 11
0.3 PARAMETER SETTINGS.. 11
0.4 CONFIGURATION DIAGRAMS .. 12

CLAUSE 1: LOGICAL DATABASE DESIGN ... 13

1.1 TABLE DEFINITIONS .. 13
1.2 PHYSICAL ORGANIZATION OF DATABASE .. 13
1.3 INSERT AND DELETE OPERATIONS .. 13
1.4 HORIZONTAL OR VERTICAL PARTITIONING ... 13
1.5 REPLICATION OR DUPLICATION .. 13

CLAUSE 2: TRANSACTION AND TERMINAL PROFILES ... 14

2.1 RANDOM NUMBER GENERATION .. 14
2.2 INPUT/OUTPUT SCREENS .. 14
2.3 PRICED TERMINAL FEATURE ... 14
2.4 PRESENTATION MANAGERS ... 14
2.5 TRANSACTION STATISTICS ... 15
2.6 QUEUING MECHANISM .. 15

CLAUSE 3: TRANSACTION AND SYSTEM PROPERTIES ... 16

3.1 ATOMICITY .. 16
 3.1.1 Atomicity of Completed Transactions ... 16
 3.1.2 Atomicity of Aborted Transactions .. 16
3.2 CONSISTENCY .. 16
3.3 ISOLATION .. 17
3.4 DURABILITY .. 21
 3.4.1 Durable Media Failure .. 21
 3.4.2 Instantaneous Interruption, Loss of Memory ... 22

CLAUSE 4: SCALING AND DATABASE POPULATION ... 24

4.1 CARDINALITY OF TABLES .. 24
4.2 DATABASE IMPLEMENTATION .. 24
4.3 DISTRIBUTION OF DATABASE FILES .. 24
4.4 60-DAY SPACE ... 26

CLAUSE 5: PERFORMANCE METRICS .. 27

5.1 TPC BENCHMARK C METRICS .. 27
5.2 RESPONSE TIMES .. 27
5.3 KEYING AND THINK TIMES ... 27
5.4 DISTRIBUTION AND PERFORMANCE CURVES .. 27
 5.4.1 Response Time frequency distribution curves .. 27
 5.4.2 Response Time versus throughput .. 31
 5.4.3 Think Time frequency distribution ... 32
 5.4.4 Throughput versus elapsed time .. 33
5.5 STEADY STATE DETERMINATION ... 34
5.6 WORK PERFORMED DURING STEADY STATE .. 34
5.7 MEASUREMENT PERIOD DURATION ... 34
5.8 TRANSACTION STATISTICS ... 34
5.9 CHECKPOINTS ... 34

CLAUSE 6: SUT, DRIVER AND COMMUNICATION ... 36
 6.1 REMOTE TERMINAL EMULATOR (RTE) .. 36
 6.2 EMULATED COMPONENTS .. 36
 6.3 FUNCTIONAL DIAGRAMS .. 36
 6.4 NETWORKS .. 36
 6.5 OPERATOR INTERVENTION ... 36

CLAUSE 7: PRICING ... 37
 7.1 HARDWARE AND SOFTWARE PRICING .. 37
 7.2 THREE YEAR PRICE ... 37
 7.3 AVAILABILITY DATES .. 37

CLAUSE 8: REPORTING .. 38
 8.1 FULL DISCLOSURE REPORT .. 38

CLAUSE 9: AUDITOR ATTESTATION .. 39
 9.1 AUDITOR INFORMATION ... 39
 9.2 ATTESTATION LETTER .. 39

APPENDIX A: SOURCE CODE .. 42
APPENDIX B: TUNABLE PARAMETERS .. 44
APPENDIX C: PRICE QUOTATIONS ... 46
Abstract

This report documents the methodology and results of the TPC Benchmark™ C (TPC-C) test conducted by TTA on the Goldilocks v3.1 Standard Edition on Nexit N811E-SI490

Goldilocks v3.1 Standard Edition on N811E-SI490

<table>
<thead>
<tr>
<th>Company Name</th>
<th>System Name</th>
<th>Database Software</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecommunications Technology Association</td>
<td>Nexit N811E-SI490</td>
<td>Goldilocks v3.1 Standard Edition</td>
<td>RedHat Enterprise Linux 7.6</td>
</tr>
</tbody>
</table>

TPC Benchmark™ C Metrics

<table>
<thead>
<tr>
<th>Total System Cost</th>
<th>TPC-C Throughput</th>
<th>Price/Performance</th>
<th>Availability Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>₩ 233,705,900 (KRW)</td>
<td>76,168 tpmC</td>
<td>3,069 KRW/tpmC</td>
<td>Available Now</td>
</tr>
</tbody>
</table>
Preface

The Transaction Processing Performance Council (TPC™) is a non-profit corporation founded to define transaction processing and database benchmarks and to disseminate objective, verifiable TPC performance data to the industry. The TPC Benchmark® C is an on-line transaction processing benchmark (OLTP) developed by the TPC.

TPC Benchmark™ C Overview

TPC Benchmark™ C (TPC-C) simulates a complete computing environment where a population of users executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses. While the benchmark portrays the activity of a wholesale supplier, TPC-C is not limited to the activity of any particular business segment, but, rather represents any industry that must manage, sell, or distribute a product or service.

TPC-C consists of a mixture of read-only and update intensive transactions that simulate the activities found in complex OLTP application environments. It does so by exercising a breadth of system components associated with such environments, which are characterized by:

- The simultaneous execution of multiple transaction types that span a breadth of complexity
- On-line and deferred transaction execution modes
- Multiple on-line terminal sessions
- Moderate system and application execution time
- Significant disk input/output
- Transaction integrity (ACID properties)
- Non-uniform distribution of data access through primary and secondary keys
- Databases consisting of many tables with a wide variety of sizes, attributes, and relationships
- Contention of data access and update

The performance metric reported by TPC-C is a “business throughput” measuring the number of orders processed per minute. Multiple transactions are used to simulate the business activity of processing an order, and each transaction is subject to a response time constraint. The performance metric for this benchmark is expressed in transactions-per-minute-C (tpmC). To be compliant with the TPC-C standard, all references to tpmC results must include the tpmC rate, the associated price-per-tpmC, and the availability date of the priced configuration.

TPC-C uses terminology and metrics that are similar to other benchmarks, originated by the TPC or others. Such similarity in terminology does not in any way imply that TPC-C results are comparable to other benchmarks. The only benchmark results comparable to TPC-C are other TPC-C results conformant with the same revision.

Despite the fact that this benchmark offers a rich environment that emulates many OLTP applications, this benchmark does not reflect the entire range of OLTP requirements. In addition, the extent to which a customer can achieve the results reported by a vendor is highly dependent on how closely TPC-C approximates the customer application. The relative performance of systems derived from this benchmark does not necessarily hold for other workloads or environments. Extrapolations to other environments are not recommended.

Benchmark results are highly dependent upon workload, specific application requirements, and systems design and implementation. Relative system performance will vary as a result of these and other factors. Therefore, TPC-C should not be used as a substitute for a specific customer application benchmark when critical capacity planning and/or product evaluation decisions are contemplated.

Further information is available at www.tpc.org
Goldilocks v3.1 Standard Edition on Nexite N811E-SI490

<table>
<thead>
<tr>
<th>Total System Cost</th>
<th>TPC-C Throughput</th>
<th>Price/Performance</th>
<th>Availability Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>₩233,705,900 (KRW)</td>
<td>76,168 tpmC</td>
<td>3,069 KRW/tpmC</td>
<td>Available Now</td>
</tr>
</tbody>
</table>

Server
- **Processors/Cores/Threads**: 2/20/40
- **Database Manager**: Goldilocks v3.1 Standard Edition
- **Operating System**: RHEL 7.6
- **Other Software**: JBoss Web Server
- **Number of Users**: 60,000

System Components

<table>
<thead>
<tr>
<th>DB Server</th>
<th>WAS Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>Description</td>
</tr>
<tr>
<td>2/20/40</td>
<td>Intel Xeon Silver 4114 2.20GHz</td>
</tr>
<tr>
<td>12</td>
<td>64GB</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>500GB SATA SSD</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>13.80TB</td>
<td>13.80TB</td>
</tr>
</tbody>
</table>

Diagram
- **Web Application Server**: 2 x ATEC A6HGBCP
- **Database Server**: 1 x Nexite N811E-SI490
- **Storage**: 1 x UNIWISE FCH2800
Goldilocks v3.1 Standard Edition on Nexite N811E-SI490

Available Now

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Source</th>
<th>Unit Price</th>
<th>Qty</th>
<th>Price</th>
<th>3-Yr. Maint. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Hardware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x DB Server – Nexite N811E-SI490</td>
<td>NXNP-A001</td>
<td>1</td>
<td>17,230,900</td>
<td>1</td>
<td>17,230,900</td>
<td></td>
</tr>
<tr>
<td>N811E Barbone (NXE-IC621P + Chenbro 4U Rack + Acbel 875W)</td>
<td>MBAA-I022</td>
<td>1</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Xeon Scalable Silver 4114 Processor (10Core 2.2GHz/13.75MB)</td>
<td>SMCP-0015</td>
<td>1</td>
<td>(included)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64GB LR-DDR4 2666 ECC RDIMM Memory (M386A8K40BM2-CTD7Q)</td>
<td>SMME-0026</td>
<td>1</td>
<td>(included)</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500GB V-NAND 860 EVO</td>
<td>SMST-0020</td>
<td>1</td>
<td>(included)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel RS3DC040, RAID Card (LSI SAS3108)</td>
<td>SMCR-0005</td>
<td>1</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qlogic QLE2672-CK, Dual-port 16Gbps DFC HBA Card</td>
<td>SMCR-0006</td>
<td>1</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDmSAS- SATA Cable Ass’y(4EA)</td>
<td>SMCB-0075</td>
<td>1</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trackball Mini Keyboard</td>
<td>SAKB-0003</td>
<td>1</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGE 27-inch Monitor (27MK430H)</td>
<td>SMOT-0011</td>
<td>1</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance - 7x24x4 Care Pack (3-yrs)</td>
<td></td>
<td></td>
<td></td>
<td>4,500,000</td>
<td>1</td>
<td>4,500,000</td>
</tr>
<tr>
<td>Storage Hardware (per server) - A6HGBDPNN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel® Xeon® Processor XEON E3-1270V5, 3.6GHz</td>
<td>A6HGBDPNN</td>
<td>2</td>
<td>1,750,000</td>
<td>2</td>
<td>3,500,000</td>
<td></td>
</tr>
<tr>
<td>DDR4 8GB (2400MHz / PC4 19000 / ECC / REG)</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samsung 850EVO, 250GB, SATA3, TLC, MEX</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1TB, 7200RPM, 64M, SATAlII, ST1000DM010</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUB-1407, USB, Black</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUB-1407, USB, 1000DPI, Black</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tower, 500W, ATX</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTP CAT5e Ethernet Cable 1M</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Cord, NICETECH, 2.5M</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6HGBDPNN 7x24x4 Care Pack (3-yrs)</td>
<td></td>
<td>2</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Hardware Sub Total</td>
<td></td>
<td></td>
<td></td>
<td>20,730,900</td>
<td>4,500,000</td>
<td></td>
</tr>
<tr>
<td>Storage Hardware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Flash Storage - FCH2800</td>
<td>FCH2800</td>
<td>3</td>
<td>72,250,000</td>
<td>1</td>
<td>72,250,000</td>
<td></td>
</tr>
<tr>
<td>FCH2800 Controller Device</td>
<td>T0001-0117-00</td>
<td>3</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back-end Bus Adapter 12G SAS</td>
<td>T0001-0117-01</td>
<td>3</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16G 8-Port Host Bus Adapter</td>
<td>T0001-0117-02</td>
<td>3</td>
<td>(included)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache Interconnect Adapter</td>
<td>T0001-0117-03</td>
<td>3</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache Memory DDR-3 (32GB)</td>
<td>T0001-0117-04</td>
<td>3</td>
<td>(included)</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCH2800 Flash Disk Drive Expantion Unit</td>
<td>T0001-0117-05</td>
<td>3</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCH2800 controller cpu Board</td>
<td>T0001-0117-06</td>
<td>3</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rack 600x1200x2010 mm (WxDxH) 42U</td>
<td>T0001-0117-07</td>
<td>3</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Management SW</td>
<td>T0001-0117-08</td>
<td>3</td>
<td>(included)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TPC-C Full Disclosure Report

Benchmark implementation and results independantly audited by Francois Raab of InfoSizing (www.sizing.com)

Prices used in TPC benchmarks reflect the actual prices a customer would pay for a one-time purchase of the stated components. Individually negotiated discounts are not permitted. Special prices based on assumptions about past or future purchases are not permitted. All discounts reflect standard pricing policies for the listed components. For complete details, see the pricing sections of the TPC benchmark pricing specifications. If you find that the stated prices are not available according to these terms, please inform the TPC at pricing@tpc.org. Thank you.

Total

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTP CAT5e Ethernet Cable 1M</td>
<td>8</td>
<td>3,900,000</td>
<td>1</td>
<td>3,900,000</td>
</tr>
<tr>
<td>Power Cord, NICETECH, 2.5M</td>
<td>2</td>
<td>31,200,000</td>
<td>1</td>
<td>31,200,000</td>
</tr>
<tr>
<td>1.6TB Flash Memory Disk Drive</td>
<td>8</td>
<td>31,200,000</td>
<td>1</td>
<td>31,200,000</td>
</tr>
<tr>
<td>Storage Hardware Sub Total</td>
<td></td>
<td></td>
<td></td>
<td>103,450,000</td>
</tr>
<tr>
<td>Client/Server Software</td>
<td></td>
<td></td>
<td></td>
<td>26,350,000</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux Server Standard 3yrs</td>
<td>4</td>
<td>3,975,000</td>
<td>3</td>
<td>11,925,000</td>
</tr>
<tr>
<td>RHEL Server Standard Maintenance - 3yrs 24x7x4hrs</td>
<td>4</td>
<td>6,000,000</td>
<td>3</td>
<td>18,000,000</td>
</tr>
<tr>
<td>Red Hat JBoss Web Server 4-Core Standard 3Year</td>
<td>4</td>
<td>2,086,000</td>
<td>2</td>
<td>4,172,000</td>
</tr>
<tr>
<td>JBoss Web Server per 16Core 3Year Maintenance</td>
<td>4</td>
<td>12,000,000</td>
<td>1</td>
<td>12,000,000</td>
</tr>
<tr>
<td>Goldilocks v3.1 Standard Edition</td>
<td>5</td>
<td>96,000,000</td>
<td>1</td>
<td>96,000,000</td>
</tr>
<tr>
<td>Goldilocks v3.1 Standard Edition Technical Supports</td>
<td>5</td>
<td>10,000,000</td>
<td>3</td>
<td>30,000,000</td>
</tr>
<tr>
<td>Software Sub Total</td>
<td></td>
<td></td>
<td></td>
<td>112,097,000</td>
</tr>
<tr>
<td>Other Hardware Sub Total</td>
<td></td>
<td></td>
<td></td>
<td>5,700,000</td>
</tr>
<tr>
<td>UbiQuoss uSafe3010-24ps (10G, 24-port)(w/sparres)</td>
<td>6</td>
<td>1,900,000</td>
<td>3</td>
<td>5,700,000</td>
</tr>
<tr>
<td>Other Hardware</td>
<td></td>
<td></td>
<td></td>
<td>5,700,000</td>
</tr>
<tr>
<td>Discounts*</td>
<td></td>
<td></td>
<td></td>
<td>-70,022,000</td>
</tr>
<tr>
<td>SW Discount - Goldilocks</td>
<td></td>
<td>-64,000,000</td>
<td>-15,600,000</td>
<td></td>
</tr>
<tr>
<td>Red Hat OS Discount</td>
<td></td>
<td>-4,770,000</td>
<td>-12,000,000</td>
<td></td>
</tr>
<tr>
<td>Red Hat JBoss Discount</td>
<td></td>
<td>-1,252,000</td>
<td>-6,000,000</td>
<td></td>
</tr>
<tr>
<td>Discounts Sub Total</td>
<td></td>
<td></td>
<td></td>
<td>-70,022,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>171,955,900</td>
</tr>
</tbody>
</table>

Pricing Notes

1. Nexite Inc.
2. Atec Co., Ltd.
3. UNIWIDE Technologies Inc.
4. Rockplace Inc.
5. Sunjesoft Inc.
6. UbiQuoss Inc.

All of the prices are based on South Korea’s currency, KRW (₩, Korean Won) and excluded VAT.

* All discounts are based on Korea list prices and for similar quantities and configurations. Discounts for similarly sized configurations will be similar to those quoted here, but may vary based on the components in the configuration.

Three year cost of ownership KRW(₩): 233,705,900

TPC-C throughput: 76,168 tpmC

Price/Performance: 3,069 W / tpmC

All of the prices are based on South Korea’s currency, KRW (₩, Korean Won) and excluded VAT.

* All discounts are based on Korea list prices and for similar quantities and configurations. Discounts for similarly sized configurations will be similar to those quoted here, but may vary based on the components in the configuration.

TPC-C Full Disclosure Report

© 2019 Telecommunications Technology Association. All rights reserved.
Goldilocks v3.1 Standard Edition on Nexite N811E-SI490

Available Now

MQTh, computed Maximum Qualified Throughput 76,168 tpmC

<table>
<thead>
<tr>
<th>Response Times (seconds)</th>
<th>Min</th>
<th>Average</th>
<th>90th</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-Order</td>
<td>0.102</td>
<td>0.104</td>
<td>0.104</td>
<td>0.706</td>
</tr>
<tr>
<td>Payment</td>
<td>0.102</td>
<td>0.104</td>
<td>0.104</td>
<td>0.906</td>
</tr>
<tr>
<td>Order-Status</td>
<td>0.102</td>
<td>0.103</td>
<td>0.103</td>
<td>0.509</td>
</tr>
<tr>
<td>Delivery (interactive portion)</td>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
<td>0.706</td>
</tr>
<tr>
<td>Delivery (deferred portion)</td>
<td>0.002</td>
<td>0.006</td>
<td>0.008</td>
<td>0.573</td>
</tr>
<tr>
<td>Stock-Level</td>
<td>0.102</td>
<td>0.103</td>
<td>0.104</td>
<td>0.506</td>
</tr>
<tr>
<td>Menu</td>
<td>0.101</td>
<td>0.102</td>
<td>0.102</td>
<td>0.707</td>
</tr>
</tbody>
</table>

Emulated Display Delay: 0.1 sec.

<table>
<thead>
<tr>
<th>Transaction Mix</th>
<th>Percent</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-Order</td>
<td>44.979%</td>
<td>31,992,039</td>
</tr>
<tr>
<td>Payment</td>
<td>43.012%</td>
<td>30,592,407</td>
</tr>
<tr>
<td>Order-Status</td>
<td>4.003%</td>
<td>2,846,875</td>
</tr>
<tr>
<td>Delivery</td>
<td>4.003%</td>
<td>2,847,266</td>
</tr>
<tr>
<td>Stock-Level</td>
<td>4.003%</td>
<td>2,847,320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keying Times (seconds)</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-Order</td>
<td>18.001</td>
<td>18.001</td>
<td>18.002</td>
</tr>
<tr>
<td>Payment</td>
<td>3.001</td>
<td>3.001</td>
<td>3.001</td>
</tr>
<tr>
<td>Order-Status</td>
<td>2.001</td>
<td>2.001</td>
<td>2.001</td>
</tr>
<tr>
<td>Delivery</td>
<td>2.001</td>
<td>2.001</td>
<td>2.006</td>
</tr>
<tr>
<td>Stock-Level</td>
<td>2.001</td>
<td>2.001</td>
<td>2.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Think Times (seconds)</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-Order</td>
<td>0.001</td>
<td>12.042</td>
<td>120.501</td>
</tr>
<tr>
<td>Payment</td>
<td>0.001</td>
<td>12.044</td>
<td>120.501</td>
</tr>
<tr>
<td>Order-Status</td>
<td>0.001</td>
<td>10.048</td>
<td>100.501</td>
</tr>
<tr>
<td>Delivery</td>
<td>0.001</td>
<td>5.028</td>
<td>50.301</td>
</tr>
<tr>
<td>Stock-Level</td>
<td>0.001</td>
<td>5.029</td>
<td>50.301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Duration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp-up time</td>
<td>65 min</td>
</tr>
<tr>
<td>Measurement Interval (MI)</td>
<td>420 min</td>
</tr>
<tr>
<td>Checkpoints in MI</td>
<td>15</td>
</tr>
<tr>
<td>Checkpoint Interval (Average / Max)</td>
<td>27.58 min / 28.00 min</td>
</tr>
<tr>
<td>Number of Transactions in MI (all types)</td>
<td>71,125,907</td>
</tr>
</tbody>
</table>
General Items

0.1 Application Code and Definition Statements

The application program (as defined in clause 2.1.7) must be disclosed. This includes, but is not limited to, the code implementing the five transactions and the terminal input output functions.

Appendix A contains the application source code for the transactions.

0.2 Benchmark Sponsor

A statement identifying the benchmark sponsor(s) and other participating companies must be provided.

This benchmark was sponsored by TTA, Telecommunications Technology Association. The implementation was developed and engineered in partnership with SUNJESOFT Inc. and Nexite Inc.

0.3 Parameter Settings

Settings must be provided for all customer-tunable parameters and options which have been changed from the defaults found in actual products, including by not limited to:

- Database options
- Recover/commit options
- Consistency locking options
- Operating system and application configuration parameters

This requirement can be satisfied by providing a full list of all parameters.

Appendix B contains the tunable parameters for the database, the operating system, and the transaction monitor.
0.4 Configuration Diagrams

Diagrams of both measured and priced configurations must be provided, accompanied by a description of the differences.

The configuration diagram for both the tested and priced system is depicted in Figure 0.1. There was no difference between the priced and tested configurations.

Figure 0.1: Benchmarked and Priced Configuration

- **Web Application Server**
 - 2 x ATEC A6HGBCP
 - 1 x Intel Xeon E3-1270 V5 3.60GHz
 - 2 x 8GB Memory
 - 1 x 1TB SATA HDD
 - 1 x 250GB SATA SSD
 - 1 x 1Gb Ethernet

- **Database Server**
 - 1 x Nexite N811E-SI490
 - 2 x Intel Xeon Silver 4114 2.20GHz
 - 12 x 64GB (768GB) Memory
 - 2 x 500GB SATA SSD
 - 1 x 16Gb 2-Port Host Bus Adaptor
 - 1 x 10Gb Ethernet

- **Storage**
 - 1 x UNIWIDE FCH2800
 - 16 x 32GB (512GB) Cache Memory
 - 8 x 1.6TB FMD Drive
 - 4 x 8/16Gb 8-Port Host Bus Adaptor

- **1Gb Ethernet Switch**
Clause 1: Logical Database Design

1.1 Table Definitions

Listing must be provided for all table definition statements and all other statements used to set up the database.

Appendix A contains the code used to define and load the database tables.

1.2 Physical Organization of Database

The physical organization of tables and indices within the database must be disclosed.

The physical organization of the database is shown in Table 1.2.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Array</th>
<th>RAID Array</th>
<th>Drives</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>MegaRAID SAS-3 3108</td>
<td>Internal</td>
<td>RAID 1</td>
<td>2 x SATA 500GB SSD</td>
<td>OS</td>
</tr>
<tr>
<td>Hitachi DKC810I Series</td>
<td>FCH2800 Array</td>
<td>RAID 1 (2D+2D)</td>
<td>4 x 1.6TB FMD</td>
<td>Database files</td>
</tr>
<tr>
<td>Hitachi DKC810I Series</td>
<td>FCH2800 Array</td>
<td>RAID 1 (2D+2D)</td>
<td>4 x 1.6TB FMD</td>
<td>Redo Logs</td>
</tr>
</tbody>
</table>

1.3 Insert and Delete Operations

It must be ascertained that insert and/or delete operations to any of the tables can occur concurrently with the TPC-C transaction mix. Furthermore, any restrictions in the SUT database implementation that precludes inserts beyond the limits defined in Clause 1.4.11 must be disclosed. This includes the maximum number of rows that can be inserted and the minimum key value for these new rows.

All insert and delete functions were verified to be fully operational during the entire benchmark.

1.4 Horizontal or Vertical Partitioning

While there are a few restrictions placed upon horizontal or vertical partitioning of tables and rows in the TPC-C benchmark, any such partitioning must be disclosed.

No horizontal or vertical partitioning was used in this benchmark.

1.5 Replication or Duplication

Replication of tables, if used, must be disclosed. Additional and/or duplicated attributes in any table must be disclosed along with a statement on the impact on performance.

No replications, duplications or additional attributes were used in this benchmark.
Clause 2: Transaction and Terminal Profiles

2.1 Random Number Generation

The method of verification for the random number generation must be described.

Random numbers were generated using ‘SysVr4 rand_r()’ call. The seed value for ‘rand_r()’ was collected and reviewed by the auditor.

2.2 Input/Output Screens

The actual layout of the terminal input/output screens must be disclosed.

All screen layouts were verified by the auditor to validate that they followed the requirements of the specifications.

2.3 Priced Terminal Feature

The method used to verify that the emulated terminals provide all the features described in Clause 2.2.2.4 must be explained. Although not specifically priced, the type and model of the terminals used for the demonstration in 8.1.3.3 must be disclosed and commercially available (including supporting software and maintenance).

The terminal attributes were manually verified by the auditor by verifying that each required feature was implemented.

2.4 Presentation Managers

Any usage of presentation managers or intelligent terminals must be explained.

Application code running on the client systems implemented the TPC-C user interface. No presentation manager software or intelligent terminal features were used. The source code for the user interface is listed in Appendix A.
2.5 Transaction Statistics

Table 2.1 lists the transaction statistics defined in Clauses 8.1.3.5 to 8.1.3.11 and observed during the Measurement Interval.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Order</td>
<td>Home warehouse order lines 99.002%</td>
</tr>
<tr>
<td></td>
<td>Remote warehouse order lines 0.998%</td>
</tr>
<tr>
<td></td>
<td>Rolled back transactions 1.002%</td>
</tr>
<tr>
<td></td>
<td>Average items per order 9.999</td>
</tr>
<tr>
<td>Payment</td>
<td>Home warehouse 85.001%</td>
</tr>
<tr>
<td></td>
<td>Remote warehouse 14.999%</td>
</tr>
<tr>
<td></td>
<td>Accessed by last name 59.988%</td>
</tr>
<tr>
<td>Order Status</td>
<td>Accessed by last name 60.050%</td>
</tr>
<tr>
<td>Delivery</td>
<td>Skipped transactions 0</td>
</tr>
<tr>
<td>Transaction Mix</td>
<td>New Order 44.979%</td>
</tr>
<tr>
<td></td>
<td>Payment 43.012%</td>
</tr>
<tr>
<td></td>
<td>Order status 4.003%</td>
</tr>
<tr>
<td></td>
<td>Delivery 4.003%</td>
</tr>
<tr>
<td></td>
<td>Stock level 4.003%</td>
</tr>
</tbody>
</table>

2.6 Queuing Mechanism

The queuing mechanism used to defer the execution of the Delivery transaction must be disclosed.

The queuing mechanism was implemented using ‘BlockingQueue’ provided by Java.
Clause 3: Transaction and System Properties

The results of the ACID tests must be disclosed along with a description of how the ACID requirements were met. This includes disclosing which case was followed for the execution of Isolation Test 7.

All ACID property tests were conducted according to the specification.

3.1 Atomicity

The system under test must guarantee that the database transactions are atomic; the system will either perform all individual operations on the data or will assure that no partially completed operations leave any effects on the data.

3.1.1 Atomicity of Completed Transactions

Perform the Payment transaction for a randomly selected warehouse, district, and customer (by customer number) and verify that the records in the CUSTOMER, DISTRICT, and WAREHOUSE tables have been changed appropriately.

A row was randomly selected from the CUSTOMER, DISTRICT, and WAREHOUSE tables, and the balances noted. A payment transaction was started with the same Customer, District, and Warehouse identifiers and a known amount. The payment transaction was committed and the rows were verified to contain correctly updated balances.

3.1.2 Atomicity of Aborted Transactions

Perform the Payment transaction for a randomly selected warehouse, district, and customer (by customer number) and substitute a ROLLBACK of the transaction for the COMMIT of the transaction. Verify that the records in the CUSTOMER, DISTRICT, and WAREHOUSE tables have NOT been changed.

A row was randomly selected from the CUSTOMER, DISTRICT, and WAREHOUSE tables, and the balances noted. A payment transaction was started with the same Customer, District, and Warehouse identifiers and a known amount. The payment transaction was rolled back and the rows were verified to contain the original balances.

3.2 Consistency

Consistency is the property of the application that requires any execution of a database transaction to take the database from one consistent state to another, assuming that the database is initially in a consistent state.

Verify that the database is initially consistent by verifying that it meets the consistency conditions defined in Clauses 3.3.2.1 to 3.3.2.4. Describe the steps used to do this in sufficient detail so that the steps are independently repeatable.

The specification defines 12 consistency conditions, of which Consistency conditions 1 through 4 were demonstrated as follows:

1. The sum of balances (d_ytd) for all Districts within a specific Warehouse is equal to the balance (w_ytd) of that Warehouse.

2. For each District within a Warehouse, the next available Order ID (d_next_o_id) minus one is equal to the most recent Order ID [max(o_id)] for the ORDER table associated with the preceding District and Warehouse. Additionally, that same relationship exists for the most recent Order ID [max(o_id)] for the NEW-ORDER table associated with the same District and Warehouse. Those relationships can be illustrated as:

 \[d_{next_o_id} - 1 = max(o_{id}) = max(no_{o_id}) \]

 where (d_w_id = o_w_id = no_w_id) and (d_id = o_d_id = no_d_id)
3. For each District within a Warehouse, the value of the most recent Order ID \([\text{max}(\text{no}_o_\text{id})]\) minus the first Order ID \([\text{min}(\text{no}_o_\text{id})]\) plus one, for the NEW-ORDER table associated with the District and Warehouse, equals the number of rows in that NEW-ORDER table. That relationship can be illustrated as:
\[
\text{max}(\text{no}_o_\text{id}) - \text{min}(\text{no}_o_\text{id}) + 1 = \text{rows in NEW-ORDER}
\]
where \((\text{o}_w_\text{id} = \text{no}_w_\text{id})\) and \((\text{o}_d_\text{id} = \text{no}_d_\text{id})\)

4. For each District within a Warehouse, the sum of Order-Line counts \([\text{sum}(\text{o}_\text{ol}_\text{cnt})]\) for the Orders associated with the District equals the number of rows in the ORDER-LINE table associated with the same District. That relationship can be illustrated as:
\[
\text{sum}(\text{o}_\text{ol}_\text{cnt}) = \text{rows in the ORDER-LINE table for the Warehouse and District}
\]

To test consistency, the following steps were executed:

1. The consistency conditions 1 through 4 were tested by running queries against the database. All queries showed that the database was in a consistent state.
2. An RTE run was executed at full load for a duration sufficient to include at least one completed checkpoint.
3. The consistency conditions 1 through 4 were tested again. All queries showed that the database was still in a consistent state.

3.3 Isolation

Sufficient conditions must be enabled at either the system or application level to ensure the required isolation defined above (clause 3.4.1) is obtained.

The benchmark specification defines nine tests to demonstrate the property of transaction isolation. The tests, described in Clauses 3.4.2.1 – 3.4.2.9, were all successfully executed using a series of scripts. Each included timestamps to demonstrate the concurrency of operations. The results of the queries were logged. The captured logs were verified to demonstrate the required isolation had been met.

Isolation Test 1

This test demonstrates isolation for read-write conflicts of Order-Status and New-Order transactions when the New-Order transaction is committed.

The test proceeds as follows:

1. An Order-Status transaction T0 was executed and committed for a randomly selected Customer, and the Order returned was noted.
2. A New-Order transaction T1 was started for the same Customer used in T0. T1 was stopped prior to COMMIT.
3. An Order-Status transaction T2 was started for the same Customer used in T1. T2 completed and was committed without being blocked by T1. T2 returned the same Order that T0 had returned.
4. T1 was allowed to complete and was committed.
5. An Order-Status transaction T3 was started for the same Customer used in T1. T3 returned the Order inserted by T1.

Isolation Test 2
This test demonstrates isolation for read-write conflicts of Order-Status and New-Order transactions when the New-Order transaction is rolled back.

The test proceeds as follows:

1. An Order-Status transaction T0 was executed and committed for a randomly selected Customer and the Order returned was noted.
2. A New-Order transaction T1 with an invalid item number was started for the same Customer used in T0. T1 was stopped immediately prior to ROLLBACK.
3. An Order-Status transaction T2 was started for the same Customer used in T1. T2 completed and was committed without being blocked by T1. T2 returned the same Order that T0 had returned.
4. T1 was allowed to ROLLBACK.
5. An Order-Status transaction T3 was started for the same Customer used in T1. T3 returned the same Order that T0 had returned.

Isolation Test 3

This test demonstrates isolation for write-write conflicts of two New-Order transactions when both transactions are committed.

The test proceeds as follows:

1. The D_NEXT_O_ID of a randomly selected district was retrieved.
2. A New-Order transaction T1 was started for a randomly selected customer within the District used in step 1. T1 was stopped immediately prior to COMMIT.
3. Another New-Order transaction T2 was started for the same customer used in T1. T2 waited.
4. T1 was allowed to complete. T2 completed and was committed.
5. The order number returned by T1 was the same as the D_NEXT_O_ID retrieved in step 1. The order number returned by T2 was one greater than the order number returned by T1.
6. The D_NEXT_O_ID of the same District was retrieved again. It had been incremented by two (i.e. it was one greater than the order number returned by T2).

Isolation Test 4

This test demonstrates isolation for write-write conflicts of two New-Order transactions when one transaction is rolled back.

The test proceeds as follows:

1. The D_NEXT_O_ID of a randomly selected District was retrieved.
2. A New-Order transaction T1, with an invalid item number, was started for a randomly selected customer within the district used in step 1. T1 was stopped immediately prior to ROLLBACK.
3. Another New-Order transaction T2 was started for the same customer used in T1. T2 waited.
4. T1 was allowed to roll back, and T2 completed and was committed.
5. The order number returned by T2 was the same as the D_NEXT_O_ID retrieved in step 1.
6. The D_NEXT_O_ID of the same District was retrieved again. It had been incremented by one (i.e. one greater than the order number returned by T2).

Isolation Test 5

This test demonstrates isolation for write-write conflicts of Payment and Delivery transactions when Delivery transaction is committed.

The test proceeds as follows:

1. A query was executed to find out the Customer who is to be updated by the next Delivery transaction for a randomly selected Warehouse and District.
2. The C_BALANCE of the Customer found in step 1 was retrieved.
3. A Delivery transaction T1 was started for the same Warehouse used in step 1. T1 was stopped immediately prior to COMMIT.
4. A Payment transaction T2 was started for the same Customer found in step 1. T2 waited.
5. T1 was allowed to complete. T2 completed and was committed.
6. The C_BALANCE of the Customer found in step 1 was retrieved again. The C_BALANCE reflected the results of both T1 and T2.

Isolation Test 6

This test demonstrates isolation for write-write conflicts of Payment and Delivery transactions when the Delivery transaction is rolled back.

The test proceeds as follows:

1. A query was executed to find out the Customer who is to be updated by the next delivery transaction for a randomly selected Warehouse and District.
2. The C_BALANCE of the Customer found in step 1 was retrieved.
3. A Delivery transaction T1 was started for the same Warehouse used in step 1. T1 was stopped immediately prior to COMMIT.
4. A Payment transaction T2 was started for the same customer found in step 1. T2 waited.
5. T1 was forced to execute a ROLLBACK. T2 completed and was committed. The C_BALANCE of the Customer found in step 1 was retrieved again. The C_BALANCE reflected the results of only T2.

Isolation Test 7

This test demonstrates repeatable reads for the New-Order transaction while an interactive transaction updates the prices of some items.

The test proceeds as follows:

1. The I_PRICE of two randomly selected items X and Y were retrieved.
2. A New-Order transaction T1 with a group of Items including Items X and Y was started. T1 was stopped immediately after retrieving the prices of all items. The prices of Items X and Y retrieved matched those retrieved in step 1.
3. A transaction T2 was started to increase the price of Items X and Y by 10%.
4. T2 did not stall and was committed.
5. T1 was resumed, and the prices of all Items were retrieved again within T1. The prices of Items X and Y matched those retrieved in step 1.
6. T1 was committed.
7. The prices of Items X and Y were retrieved again. The values matched the values set by T2.

The Execution followed Case D, where T3 does not stall and no transaction is rolled back. Query T4 verifies the price change made by T3.

Isolation Test 8

This test demonstrates isolation for phantom protection between New-Order and Order-Status transactions.

The test proceeds as follows:

1. An Order-Status transaction T1 was started for a randomly selected Customer.
2. T1 was stopped immediately after reading the ORDER table for the selected Customer to find the most recent Order for that Customer.
3. A New-Order transaction T2 was started for the same Customer. T2 completed and was committed without being blocked by T1.
4. T1 was resumed and the ORDER table was read again to determine the most recent Order for the same Customer. The Order found was the same as the one found in step 2.
5. T1 completed and was committed.

Isolation Test 9

This test demonstrates isolation for phantom protection between New-Order and Delivery transactions.

The test proceeds as follows:

1. The NO_D_ID of all NEW_ORDER rows for a randomly selected Warehouse and District was changed to 11. The changes were committed.
2. A Delivery transaction T1 was started for the selected Warehouse.
3. T1 was stopped immediately after reading the NEW_ORDER table for the selected Warehouse and District. No qualifying row was found.
4. A New-Order transaction T2 was started for the same Warehouse and District. T2 completed and was committed without being blocked by T1.
5. T1 was resumed and the NEW_ORDER table was read again. No qualifying row was found.
6. T1 completed and was committed.
7. The NO_D_ID of all NEW_ORDER rows for the selected Warehouse and District was restored to the original value. The changes were committed.
3.4 Durability

The tested system must guarantee durability: the ability to preserve the effects of committed transactions and ensure database consistency after recovery from any one of the failures listed in Clause 3.5.3

- Permanent irrecoverable failure of any single durable medium containing TPC-C database tables or recovery log data (this test includes failure of all or part of memory)
- Instantaneous interruption (system crash/system hang) in processing that requires system reboot to recover
- Failure of all or part of memory (loss of contents)

3.4.1 Durable Media Failure

3.4.1.1 Loss of Log Media and Data Media

This test was conducted on a fully scaled database. To demonstrate recovery from a permanent failure of durable medium containing TPC-C Log Media and Data Media, the following steps were executed:

1. The total number of Orders is determined by the sum of D_NEXT_O_ID of all rows in the DISTRICT table; giving count-1.
2. The consistency is verified.
3. The RTE is started with full user load.
4. The test is allowed to run for a minimum of 5 minutes after ramp-up.
5. A first checkpoint is initiated and completed.
6. The test is allowed to run for a minimum of 2 more minutes.
7. A second checkpoint is initiated.
8. Before the second checkpoint completes, one data disk is disabled by removing it physically. Since the data disks are configured with redundancy, the transactions continued to run without interruption.
9. The test is allowed to run until the completion of the second checkpoint and for at least 5 minutes
10. A third checkpoint is initiated.
11. Before the third checkpoint completes, one log device is disabled by removing it physically. Since the log devices are configured with redundancy, the transactions continued to run without interruption.
12. The test is allowed to run until the third checkpoint has completed, but no less than 5 more minutes.
13. The RTE run is completed.
14. The consistency is verified.
15. Step 1 is repeated, giving count-2.
16. The RTE result file is used to determine the number of New-Order transactions successfully completed during the full run.
17. The difference between the count-1 and count-2 is compared with the number of New-Order transactions successfully completed during the full run. The difference indicated that no committed transactions had been lost.
18. Data from the success file is used to query the database to demonstrate that the last 500 successful New-Orders have corresponding rows in the ORDER table.

3.4.1.2 Instantaneous Loss of Storage Controller Cache
This test was executed on a fully scaled database. The following steps were executed: To demonstrate recovery from a permanent failure of a controller cache, the following steps were executed:

1. The total number of Orders is determined by the sum of D_NEXT_O_ID of all rows in the DISTRICT table; giving count-1.
2. The consistency is verified.
3. The RTE is started with full user load.
4. The test is allowed to run for a minimum of 5 minutes at full load (after ramp-up)
5. A first checkpoint is initiated and completed.
6. The test is allowed to run for a minimum of 2 more minutes.
7. A second checkpoint is initiated.
8. Before the second checkpoint completes, one of the two caches in the storage subsystem was failed (removing it from the chassis)
9. The RTE run is completed.
10. Step 1 is repeated, giving count-2.
11. The consistency is verified.
12. The RTE result file is used to determine the number of New-Order transactions successfully completed during the full run.
13. The difference between the count-1 and count-2 is compared with the number of New-Order transactions successfully completed during the full run. The difference indicated that all committed transactions had been successfully recovered.
14. Data from the success file is used to query the database to demonstrate that the last 500 successful New-Orders have corresponding rows in the ORDER table.

3.4.2 Instantaneous Interruption, Loss of Memory

As the loss of power erases the contents of memory, the instantaneous interruption and the loss of memory tests were combined into a single test. This test was executed on a fully scaled database. The following steps were executed:

1. The total number of Orders is determined by the sum of D_NEXT_O_ID of all rows in the DISTRICT table; giving count-1.
2. The consistency is verified.
3. The RTE is started with full user load.
4. The test is allowed to run for a minimum of 5 minutes at full load (after ramp-up).
5. A first checkpoint is initiated and completed.
6. The test is allowed to run for a minimum of 2 more minutes.
7. A second checkpoint is initiated.
8. Before the second checkpoint completes, the primary power to the back-end server is shut off (removing both power cords).
9. The RTE is shutdown.
10. Power is restored to the database server and the system performs an automatic recovery.
11. GOLDILOCKS is restarted and performs an automatic recovery.
12. Step 1 is repeated, giving count-2.
13. The consistency is verified.
14. The RTE result file is used to determine the number of New-Order transactions successfully completed during the full run.
15. The difference between the count-1 and count-2 is compared with the number of New-Order transactions successfully completed during the full run. The difference indicated that all committed transactions had been successfully recovered.
16. Data from the success file is used to query the database to demonstrate that the last 500 successful New-Orders have corresponding rows in the ORDER table.
Clause 4: Scaling and Database Population

4.1 Cardinality of Tables

The cardinality (e.g. number of rows) of each table, as it existed at the start of the benchmark run, must be disclosed. If the database was over-scaled and inactive rows of the WAREHOUSE table were deleted, the cardinality of the WAREHOUSE table as initially configured and the number of rows

Table 4.1 shows that number of rows for each table as they were initially populated.

<table>
<thead>
<tr>
<th>Table</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warehouse</td>
<td>6,000</td>
</tr>
<tr>
<td>District</td>
<td>60,000</td>
</tr>
<tr>
<td>Customer</td>
<td>180,000,000</td>
</tr>
<tr>
<td>History</td>
<td>180,000,000</td>
</tr>
<tr>
<td>Order</td>
<td>180,000,000</td>
</tr>
<tr>
<td>New Order</td>
<td>54,000,000</td>
</tr>
<tr>
<td>Order Line</td>
<td>1,799,638,810</td>
</tr>
<tr>
<td>Stock</td>
<td>600,000,000</td>
</tr>
<tr>
<td>Item</td>
<td>100,000</td>
</tr>
<tr>
<td>Unused Warehouses</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2 Database Implementation

A statement must be provided that describes: The data model implemented by DBMS used (e.g. relational, network, hierarchical). The database interfaces (e.g. embedded, call level) and access language (e.g. SQL, DL/1, COBOL read/write used to implement the TPC-C transaction. If more than one interface/access language is used to implement TPC-C, each interface/access language must be described and a list of which interface/access language is used with which transaction type must be disclosed.

Goldilocks v3.1 is an in-memory DBMS, implementing the relational model.
The transactions are implemented in SQL via JDBC calls to the database engine.
All application code and procedures are listed in Appendix A.

4.3 Distribution of Database Files

The distribution of tables and logs across all media must be explicitly depicted for tested and priced systems.
The database files are stored on a set of four 1.6TB disks configured as RAID1(2+2). The database log files are stored on four 1.6TB disks configured as RAID1(2+2).

Table 4.3: Database file locations

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system_XXX.dbf</td>
<td>/data/db/db1</td>
<td>System tables and dictionary</td>
</tr>
<tr>
<td>tpcc_data_XX.dbf</td>
<td>/data/db/db1 /data/db/db2 /data/db/db3 /data/db/db4 /data/db/db5</td>
<td>Database data files</td>
</tr>
<tr>
<td>redo_X_X.log</td>
<td>/wal</td>
<td>Database log files</td>
</tr>
</tbody>
</table>

The distribution of tables and logs across storage media is shown in Table 1.2.
4.4 60-Day Space

Details of the 60-day space computations along with proof that the database is configured to sustain 8 hours of growth for the dynamic tables (Order, Order-Line, and History) must be disclosed.

A test run of over 8 hours was executed to demonstrate that the configuration is capable of sustaining 8 hours of growth at the reported throughput. The computation of the 60-day storage requirements is shown in Table 4.4.

Table 4.4: 60-Day Space Calculations

| Base Unit (KBytes) | 76,168,409 |

<table>
<thead>
<tr>
<th>Table</th>
<th>Rows</th>
<th>Data</th>
<th>Index</th>
<th>Initial Population</th>
<th>5% Growth</th>
<th>8-Hour Growth</th>
<th>Required Runtime Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAREHOUSE</td>
<td>6,000</td>
<td>48,368</td>
<td>168</td>
<td>48,536</td>
<td>2,427</td>
<td>0</td>
<td>50,963</td>
</tr>
<tr>
<td>DISTRICT</td>
<td>60,000</td>
<td>7,664</td>
<td>1,816</td>
<td>9,480</td>
<td>474</td>
<td>0</td>
<td>9,924</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>180,000,000</td>
<td>115,720,984</td>
<td>14,721,984</td>
<td>130,442,968</td>
<td>6,522,148</td>
<td>0</td>
<td>136,965,116</td>
</tr>
<tr>
<td>NEW_ORDER</td>
<td>54,000,000</td>
<td>3,408,496</td>
<td>1,001,368</td>
<td>5,309,864</td>
<td>265,403</td>
<td>0</td>
<td>5,575,357</td>
</tr>
<tr>
<td>ITEM</td>
<td>100,000</td>
<td>10,808</td>
<td>2,776</td>
<td>13,584</td>
<td>679</td>
<td>0</td>
<td>14,263</td>
</tr>
<tr>
<td>STOCK</td>
<td>600,000,000</td>
<td>220,741,424</td>
<td>19,541,936</td>
<td>240,283,380</td>
<td>12,014,168</td>
<td>0</td>
<td>252,297,528</td>
</tr>
<tr>
<td>HISTORY</td>
<td>180,000,000</td>
<td>14,751,920</td>
<td>0</td>
<td>14,751,920</td>
<td>0</td>
<td>2,996,351</td>
<td>17,748,271</td>
</tr>
<tr>
<td>ORDERS</td>
<td>180,000,000</td>
<td>11,406,040</td>
<td>13,563,552</td>
<td>24,969,592</td>
<td>0</td>
<td>2,316,749</td>
<td>27,286,341</td>
</tr>
<tr>
<td>ORDER_LINE</td>
<td>1,799,638,810</td>
<td>168,724,744</td>
<td>70,180,584</td>
<td>238,905,328</td>
<td>0</td>
<td>34,270,695</td>
<td>273,176,023</td>
</tr>
<tr>
<td>Total</td>
<td>534,620,448</td>
<td>119,914,164</td>
<td>654,734,632</td>
<td>18,905,390</td>
<td>39,583,795</td>
<td>713,123,816</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60-Day Requirements</th>
<th>Memory Requirements</th>
<th>Storage Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic-Space</td>
<td>Final Allocation</td>
<td>Total Disk Space</td>
</tr>
<tr>
<td></td>
<td>194,882,704</td>
<td>6,754,527,960</td>
</tr>
<tr>
<td>Free-Space</td>
<td>Final Allocation</td>
<td>Log space used</td>
</tr>
<tr>
<td></td>
<td>544,712</td>
<td>167,772,160</td>
</tr>
<tr>
<td>Static-Space</td>
<td>Final Allocation</td>
<td>60-Day Space</td>
</tr>
<tr>
<td></td>
<td>459,851,928</td>
<td>2,834,879,615</td>
</tr>
<tr>
<td>Daily-Growth</td>
<td>Final Allocation</td>
<td>Remaining Space</td>
</tr>
<tr>
<td></td>
<td>39,583,795</td>
<td>3,751,876,185</td>
</tr>
<tr>
<td>Daily-Spread</td>
<td>Final Allocation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>60-Day Space</td>
<td>Final Allocation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,834,879,615</td>
<td></td>
</tr>
</tbody>
</table>
Clause 5: Performance Metrics

5.1 TPC Benchmark C Metrics

The TPC-C Metrics are reported in the front of this report as part of the executive summary.

5.2 Response Times

Ninetieth percentile, maximum and average response times must be reported for all transaction types as well as for the menu response time.

During the performance run transactions are submitted by the RTE in accordance with the required mix, Keying Times and Think Times of the benchmark Specification. Transactions are submitted by emulated users via HTTP. All timings are recorded by the RTE. The response time is measured from the submission of the transaction until the last byte of response is received by the RTE.

The details of the response times are reported in the front of this report as part of the Executive Summary.

5.3 Keying and Think Times

The minimum, the average, and the maximum keying and think times must be reported for each transaction type.

The details of the keying and think times are reported in the front of this report as part of the Executive Summary.

5.4 Distribution and Performance Curves

5.4.1 Response Time frequency distribution curves

Response Time frequency distribution curves must be reported for each transaction type.

Figure 5.4.1.1 shows the Response Time frequency distribution curves for the New-Order transaction.

Figure 5.4.1.2 shows the Response Time frequency distribution curves for the Payment transaction.

Figure 5.4.1.3 shows the Response Time frequency distribution curves for the Order-Status transaction.

Figure 5.4.1.4 shows the Response Time frequency distribution curves for the interactive portion of the Delivery transaction.

Figure 5.4.1.5 shows the Response Time frequency distribution curves for the Stock-Level transaction.
Figure 5.4.1.1: New-Order RT Frequency Distribution

![New-Order Response Time](image_url)

- Average Response Time: 0.104
- 90th Percentile Response Time: 0.104
- Maximum Response Time: 0.706

Figure 5.4.1.2: Payment RT Frequency Distribution

![Payment Response Time](image_url)

- Average Response Time: 0.104
- 90th Percentile Response Time: 0.104
- Maximum Response Time: 0.906
Figure 5.4.1.3: Order-Status RT Frequency Distribution

Average Response Time: 0.103
90th Percentile Response Time: 0.103
Maximum Response Time: 0.509

Figure 5.4.1.4: Delivery (Interactive) RT Frequency Distribution

Average Response Time: 0.101
90th Percentile Response Time: 0.101
Maximum Response Time: 0.706
Figure 5.4.1.5: Stock-Level RT Frequency Distribution

- Average Response Time: 0.103
- 90th Percentile Response Time: 0.104
- Maximum Response Time: 0.506
5.4.2 Response Time versus throughput

The performance curve for response times versus throughput must be reported for the New-Order transaction.

Figure 5.4.2 shows the Response Time versus throughput curves for the New-Order transaction.

![Figure 5.4.2: New-Order RT versus Throughput](image-url)
5.4.3 Think Time frequency distribution

Think Time frequency distribution curves (see Clause 5.6.3) must be reported for the New-Order transaction.

Figure 5.4.3 shows the Think Time frequency distribution curves for the New-Order transaction.

![New-Order Think Time Frequency Distribution](image)

Figure 5.4.3: New-Order Think Time Frequency Distribution
5.4.4 Throughput versus elapsed time

A graph of throughput versus elapsed time must be reported for the New-Order transaction.

Figure 5.4.4 shows the throughput versus elapsed time for the New-Order transaction. The start and end of the Measurement Interval is included on the figure.

Figure 5.4.4: New-Order Throughput versus Elapsed Time
5.5 Steady State Determination

The method used to determine that the SUT had reached a steady state prior to commencing the measurement interval must be disclosed.

Steady state was determined using real time monitor utilities from the RTE. Steady state was further confirmed by a visual analysis of the throughput graph.

5.6 Work Performed During Steady State

A description of how the work normally performed during a sustained test (for example checkpointing, writing redo/undo log records, etc.) actually occurred during the measurement interval must be reported.

During the test, Goldilocks satisfied all of the ACID properties required by the benchmark specification. Committed transactions write a Redo record in the transaction log, to be used in case of system failure. The Redo records are used for roll-forward recovery during a re-start following a failure. This prevents the system from losing any committed transactions. Checkpoints periodically occurred about every 28 min. and are completed in about 7.5 min.

5.7 Measurement Period Duration

A statement of the duration of the measurement interval for the reported Maximum Qualified Throughput (tpmC) must be included.

The duration of the reported measured interval was 7 hours (7hr = 420min = 25,200sec).

5.8 Transaction Statistics

The percentage of the total mix for each transaction type must be disclosed. The percentage of New-Order transactions rolled back as a result of invalid item number must be disclosed. The average number of order-lines entered per New-Order transaction must be disclosed. The percentage of remote order lines per New-Order transaction must be disclosed. The percentage of remote Payment transactions must be disclosed. The percentage of customer selections by customer last name in the Payment and Order-Status transactions must be disclosed. The percentage of skipped Delivery transactions must be disclosed.

The details of the transaction statistics are reported in the front of this report as part of the Executive Summary.

5.9 Checkpoints

The number of checkpoints in the Measurement Interval, the time in seconds from the start of the Measurement Interval to the first checkpoint, and the Checkpoint Interval must be disclosed.

Two full checkpoints occurred before the Measurement Interval. 15 full checkpoints occurred during the Measurement Interval. The checkpoints’ start and end times and durations during the Measurement Interval are listed in table 5.6.
<table>
<thead>
<tr>
<th>Event</th>
<th>Event time</th>
<th>Execution time</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Interval Begin</td>
<td>2019-08-14 22:32:25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Checkpoint3 Begin</td>
<td>2019-08-14 23:28:23</td>
<td>00:28:00</td>
<td></td>
</tr>
<tr>
<td>Checkpoint3 End</td>
<td>2019-08-14 23:35:51</td>
<td>00:07:28</td>
<td></td>
</tr>
<tr>
<td>Checkpoint4 Begin</td>
<td>2019-08-14 23:56:19</td>
<td>00:27:56</td>
<td></td>
</tr>
<tr>
<td>Checkpoint4 End</td>
<td>2019-08-15 00:03:47</td>
<td>00:07:28</td>
<td></td>
</tr>
<tr>
<td>Checkpoint5 Begin</td>
<td>2019-08-15 00:24:17</td>
<td>00:27:59</td>
<td></td>
</tr>
<tr>
<td>Checkpoint5 End</td>
<td>2019-08-15 00:31:48</td>
<td>00:07:31</td>
<td></td>
</tr>
<tr>
<td>Checkpoint6 Begin</td>
<td>2019-08-15 00:52:13</td>
<td>00:27:56</td>
<td></td>
</tr>
<tr>
<td>Checkpoint6 End</td>
<td>2019-08-15 00:59:40</td>
<td>00:07:27</td>
<td></td>
</tr>
<tr>
<td>Checkpoint7 Begin</td>
<td>2019-08-15 01:20:10</td>
<td>00:27:57</td>
<td></td>
</tr>
<tr>
<td>Checkpoint7 End</td>
<td>2019-08-15 01:27:37</td>
<td>00:07:27</td>
<td></td>
</tr>
<tr>
<td>Checkpoint8 Begin</td>
<td>2019-08-15 01:48:07</td>
<td>00:27:57</td>
<td></td>
</tr>
<tr>
<td>Checkpoint8 End</td>
<td>2019-08-15 01:55:36</td>
<td>00:07:29</td>
<td></td>
</tr>
<tr>
<td>Checkpoint9 Begin</td>
<td>2019-08-15 02:16:06</td>
<td>00:27:58</td>
<td></td>
</tr>
<tr>
<td>Checkpoint9 End</td>
<td>2019-08-15 02:23:33</td>
<td>00:07:27</td>
<td></td>
</tr>
<tr>
<td>Checkpoint10 Begin</td>
<td>2019-08-15 02:44:03</td>
<td>00:27:57</td>
<td></td>
</tr>
<tr>
<td>Checkpoint10 End</td>
<td>2019-08-15 02:51:31</td>
<td>00:07:28</td>
<td></td>
</tr>
<tr>
<td>Checkpoint11 Begin</td>
<td>2019-08-15 03:12:01</td>
<td>00:27:58</td>
<td></td>
</tr>
<tr>
<td>Checkpoint11 End</td>
<td>2019-08-15 03:19:32</td>
<td>00:07:31</td>
<td></td>
</tr>
<tr>
<td>Checkpoint12 Begin</td>
<td>2019-08-15 03:39:58</td>
<td>00:27:58</td>
<td></td>
</tr>
<tr>
<td>Checkpoint12 End</td>
<td>2019-08-15 03:47:26</td>
<td>00:07:27</td>
<td></td>
</tr>
<tr>
<td>Checkpoint13 Begin</td>
<td>2019-08-15 04:07:57</td>
<td>00:27:59</td>
<td></td>
</tr>
<tr>
<td>Checkpoint13 End</td>
<td>2019-08-15 04:15:28</td>
<td>00:07:31</td>
<td></td>
</tr>
<tr>
<td>Checkpoint14 Begin</td>
<td>2019-08-15 04:35:56</td>
<td>00:27:58</td>
<td></td>
</tr>
<tr>
<td>Checkpoint14 End</td>
<td>2019-08-15 04:43:28</td>
<td>00:07:32</td>
<td></td>
</tr>
<tr>
<td>Checkpoint15 Begin</td>
<td>2019-08-15 05:03:52</td>
<td>00:27:57</td>
<td></td>
</tr>
<tr>
<td>Checkpoint15 End</td>
<td>2019-08-15 05:11:24</td>
<td>00:07:32</td>
<td></td>
</tr>
<tr>
<td>Checkpoint16 Begin</td>
<td>2019-08-15 05:31:51</td>
<td>00:27:59</td>
<td></td>
</tr>
<tr>
<td>Checkpoint16 End</td>
<td>2019-08-15 05:39:23</td>
<td>00:07:31</td>
<td></td>
</tr>
<tr>
<td>Checkpoint17 Begin</td>
<td>2019-08-15 05:59:50</td>
<td>00:27:59</td>
<td></td>
</tr>
<tr>
<td>Checkpoint17 End</td>
<td>2019-08-15 06:07:25</td>
<td>00:07:35</td>
<td></td>
</tr>
<tr>
<td>Measurement Interval End</td>
<td>2019-08-15 06:17:15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Clause 6: SUT, Driver and Communication

6.1 Remote Terminal Emulator (RTE)

If the RTE is commercially available, then its inputs must be specified. Otherwise, a description must be supplied of what inputs (e.g., scripts) to the RTE had been used.

The RTE software used was internally developed. The RTE simulated web users. It generated random input data based on the benchmark requirements and recorded response times and other statistics for each transaction cycle.

6.2 Emulated Components

It must be demonstrated that the functionality and performance of the components being emulated in the Driver System are equivalent to the priced system. The results of the test described in Clause 6.6.3.4 must be disclosed.

No components were emulated by the driver system.

6.3 Functional Diagrams

A complete functional diagram of both the benchmark configuration and the configuration of the proposed (target) system must be disclosed. A detailed list of all hardware and software functionality being performed on the Driver System and its interface to the SUT must be disclosed.

The diagram in Figure 0.1 shows the tested and priced benchmark configurations.

6.4 Networks

The network configuration of both the tested services and proposed (target) services which are being represented and a thorough explanation of exactly which parts of the proposed configuration are being replaced with the Driver System must be disclosed.

The bandwidth of the networks used in the tested/priced configuration must be disclosed.

The diagram in Figure 0.1 shows the network configuration between the components of the tested configuration. The RTE and the SUT are connected through a 1Gbit switch.

The network bandwidths are listed in Figure 0.1.

6.5 Operator Intervention

If the configuration requires operator intervention (see Clause 6.6.6), the mechanism and the frequency of this intervention must be disclosed.

No operator intervention is required to sustain eight hours at the reported throughput.
Clause 7: Pricing

7.1 Hardware and Software Pricing

A detailed list of hardware and software used in the priced system must be reported. Each separately orderable item must have vendor part number, description, and release/revision level, and either general availability status or committed delivery date. If package-pricing is used, vendor part number of the package and a description uniquely identifying each of the components of the package must be disclosed. Pricing source and effective date(s) of price(s) must also be reported.

The details of the hardware and software are reported in the front of this report as part of the Executive Summary.

7.2 Three Year Price

The total 3-year price of the entire configuration must be reported, including: hardware, software, and maintenance charges. Separate component pricing is recommended. The basis of all discounts used must be disclosed.

The pricing details for this TPC-C result are reported in the front of this report as part of the Executive Summary.

7.3 Availability Dates

The committed delivery date for general availability (availability date) of products used in the price calculations must be reported. When the priced system includes products with different availability dates, the reported availability date for the priced system must be the date at which all components are committed to be available.

All components of the priced system are available as of the date of this publication.
Clause 8: Reporting

8.1 Full Disclosure Report

A Full Disclosure report is required in order for results to be considered compliant with the TPC-C benchmark specification.

This document constitutes the Full Disclosure Report for the TPC-C benchmark result described within.
Clause 9: Auditor Attestation

9.1 Auditor Information

The auditor’s agency name, address, phone number, and Attestation letter with a brief audit summary report indicating compliance must be included in the full disclosure report. A statement should be included specifying who to contact in order to obtain further information regarding the audit process.

This benchmark was audited by:

InfoSizing
Francois Raab
20 Kreg Ln
Manitou Springs, CO 80829
Phone: +1 (719) 473-7555
www.sizing.com

9.2 Attestation Letter

The auditor’s attestation letter is included in the following pages.
I verified the TPC Benchmark C (TPC-C™ v5.11.0) performance of the following configuration:

Platform: Nexite N811E-SI490
Operating System: Red Hat Enterprise Linux Server 7.6
Database Manager: Goldilocks v3.1 Standard Edition

The results were:

Performance Metric | 76,168 tpmC
Number of Users | 60,000

Server | Nexite N811E-SI490

| CPUs | 2 x Intel Xeon Silver 4114 Processors (2.2GHz, 13.75MB L3)
| Memory | 768 GB
| Disks | Qty | Size | Type |
| | 2 | 500GB | SATA SSD (internal)
| | 8 | 1.6TB | FMD SSD (external) |

In my opinion, these performance results were produced in compliance with the TPC requirements for the benchmark.

The following verification items were given special attention:

- The transactions were correctly implemented
- The database records were the proper size
- The database was properly scaled and populated
- The ACID properties were met
• Input data was generated according to the specified percentages
• The transaction cycle times included the required keying and think times
• The reported response times were correctly measured.
• At least 90% of all delivery transactions met the 80 Second completion time limit
• All 90% response times were under the specified maximums
• The measurement interval was representative of steady state conditions
• The reported measurement interval was over 120 minutes
• Checkpoints intervals were under 30 minutes
• The 60-day storage requirement was correctly computed
• The system pricing was verified for major components and maintenance

Additional Audit Notes:

None.

Respectfully Yours,

Francçois Raab, TPC Certified Auditor
Appendix A: Source Code

The source code and scripts used to implement the benchmark is provided as a soft appendix. This soft appendix includes the following files:

\ACID
 \ACID\include
 \ACID\src
 \ACID\include\acid.h
 \ACID\src\atom.c
 \ACID\src\compare.c
 \ACID\src\consist.c
 \ACID\src\Delivery.c
 \ACID\src\isol1.c
 \ACID\src\isol2.c
 \ACID\src\isol3.c
 \ACID\src\isol4.c
 \ACID\src\isol5.c
 \ACID\src\isol6.c
 \ACID\src\isol7.c
 \ACID\src\isol8.c
 \ACID\src\isol9.c
 \ACID\src\Makefile
 \ACID\src\NewOrder.c
 \ACID\src\OrderStatus.c
 \ACID\src\Payment.c
 \ACID\src\support.c
\bin
 \bin\load.sh
\html
 \html\DeliveryInput.html
 \html\MainMenu.html
 \html\NewOrderInput.html
 \html\OrderStatusInput.html
 \html\PaymentInput.html
 \html\StockLevelInput.html
\include
 \include\spt_proc.h
 \include\support.h
\java
 \java\Common.java
 \java\Delivery.java
 \java\NewOrder.java
 \java\OrderStatus.java
 \java\Payment.java
 \java\StockLevel.java
\scripts
 \scripts\analyze_system.sql
 \scripts\analyze_table.sql
 \scripts\analyze_table_district.sql
 \scripts\analyze_table_item.sql
 \scripts\analyze_table_new_order.sql
 \scripts\analyze_table_orders.sql
 \scripts\analyze_table_order_line.sql
Appendix B: Tunable Parameters

goldilocks.properties.conf

Limit.conf

server.xml

<domain> <item> <value>
</domain>

/etc/security/limits.conf

This file sets the resource limits for the users logged in via PAM.
It does not affect resource limits of the system services.
Also note that configuration files in /etc/security/limits.d directory,
which are read in alphabetical order, override the settings in this file.
In case the domain is the same or more specific.
That means for example that setting a limit for wildcard domain here
can be overridden with a wildcard setting in a config file in the
subdirectory, but a user specific setting here can be overridden only
with a user specific setting in the subdirectory.
Each line describes a limit for a user in the form:
<domain> <type> <item> <value>
@Here:
<domain> can be:
- a user name
- a group name, with @group syntax
- the wildcard *, for default entry
- the wildcard %, can be also used with @group syntax,
for maxlogin limit
<type> can have the two values:
- "soft" for enforcing the soft limits
- "hard" for enforcing hard limits
<item> can be one of the following:
- core - limits the core file size (KB)
- data - max data size (KB)
- fszize - maximum filesize (KB)
- mlock - max locked-in-memory address space (KB)
- nfiles - max number of open file descriptors
- rss - max resident set size (KB)
- stack - max stack size (KB)
- cpu - max CPU time (MIN)
- rsize - max number of processes
- as - address space limit (KB)
- maxlogin - max number of logins for this user
- maxlogins - max number of logins on the system
- priority - the priority to run user process with
- locks - max number of file locks the user can hold
- sigpending - max number of pending signals
- msgsize - max size of posix message queues (bytes)
- msgqueue - max number of POSIX message queues (bytes)
- priority - the priority to run user process with
- maxsyslogins - max number of logins on the system
- maxlogins - max number of logins for this user
- as - address space limit (KB)
- nproc - max number of processes
- cpu - max CPU time (MIN)
- stack - max stack size (KB)
- rss - max resident set size (KB)
- nofile - max number of open file descriptors
- memlock - max locked-in-memory address space (KB)
- fsize - maximum filesize (KB)
- core - limits the core file size (KB)
- nice - max nice priority allowed to raise to values: [-20, 19]
- rtprio - max real-time priority
PURPOSE may contain one or more tunable parameters such as "Valves" at this level.

Annex A: Code Base

License.

The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the license is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the license.

<!-- Note: A "Server" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level.
Documentation at /docs/config/server.html

<Server port="8005" shutdown="SHUTDOWN">
 <!-- Prevent memory leaks due to use of particular java/javax APIs-->
 <Listener className="org.apache.catalina.security.SecurityListener"/>
 <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener"/>
 <Listener className="org.apache.catalina.core.AprLifecycleListener"/>
 <Listener className="org.apache.catalina.mbeans.JmxRemoteLifecycleListener"/>
 <Listener className="org.apache.catalina.startup.VersionLoggerListener"/>
 <Listener className="org.apache.catalina.mbeans.StandbyLifecycleListener"/>
 <Listener className="org.apache.catalina.mbeans.JspManagerLifecycleListener"/>
 <Listener className="com.sun.jndi.dnsl MutableDataSourceListener"/>
 <Listener className="org.apache.catalina.mbeans.ConnectionHttpLifecycleListener"/>
 <Server port="8005" shutdown="SHUTDOWN">
 <Service name="MyService">
 <Connector protocol="http" port="8005" SSLEngine="on"/>
 <Connector protocol="https" port="8443" SSLEngine="on"/>
 </Service>
 </Server>
</Server>
so you may not define subcomponents such as "Valves" at this level.
Documentation at /docs/config/service.html

```xml
<!-- The connectors can use a shared executor, you can define one or more named thread pools-->
<Executor name="tomcatThreadPool" namePrefix="catalina-exec-
maxThreads="150" minSpareThreads="4"/>
```

`<!-- A "Connector" represents an endpoint by which requests are received and responses are returned. Documentation at : Java AJP Connector: /docs/config/ajp.html APA (HTTP/AJP) Connector: /docs/apr.html Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8080"
acceptCount="150000"
connectionTimeout="20000000"
maxThreads="1024"
maxKeepAliveRequests="-1" keepAliveTimeout="-1"
redirectPort="8443"/>

<!-- A "Connector" using the shared thread pool-->
<Connector executor="tomcatThreadPool" port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
redirectPort="8443"/>

<!-- Define a SSL HTTP/1.1 Connector on port 8443
This connector uses the BIO implementation that requires the JSSE style configuration. When using the APR/native implementation, the OpenSSL style configuration is required as described in the APR/native documentation -->
<Connector port="8443"
secure="true"
clientAuth="false" sslProtocol="TLS"/>

<!-- Define an AJP 1.3 Connector on port 8009 -->
<Connector port="8009" protocol="AJP/1.3" redirectPort="8443"/>

<!-- An Engine represents the entry point (within Catalina) that processes every request. The Engine implementation for Tomcat stand alone analyzes the HTTP headers included with the request, and passes them on to the appropriate Host (virtual host). Documentation at /docs/config/engine.html -->
```

Sysctl_fe.conf

```
net.core.netdev_max_backlog=65535
net.core.somaxconn=65535
net.ipv4.tcp_tw_reuse=1
net.ipv6.conf.all.disable_ipv6=1
net.ipv6.conf.default.disable_ipv6=1
```
Appendix C: Price Quotations

DB Server

견적서
2019년 09월 06일

ATTN:

FROM: 이창경상무 010-6290-8170

DBMS용 서버인 N811E-SI410에 대한 견적을 아래와 같이 보내드리오니 업무에 참조하시기 바랍니다.

(단위:원)

<table>
<thead>
<tr>
<th>품목</th>
<th>세부사항</th>
<th>EA</th>
<th>단가</th>
<th>개별비 합계 금액</th>
</tr>
</thead>
</table>
| N811E-SI490 서버   | . N811E bare bone  
. Intel XEON scalable silver 4114 processor  
. 64GB LR-DDR4 2666 ECC RDIMM  
. 500GB V-NAND 360 EVO  
. Intel RS3DC040, RAID card  
. Qlogic QE2672-CR, Dual port 16Gbps FCoE HBA card  
. HDM-SAS-SATA cable | 1  | 16,872,100 | 16,872,100 |
| 주변장치     | . Trackball mini KBD  
. 27" LCD monitor | 1  | 358,800  | 358,800 |
| 유지보수 비용   | . 3년 유지보수 비용 | 1  | 4,500,000 | 4,500,000 |

|               |               |     |       |               |
|               |               | 21,730,900 |

부가가치세 2,173,090

합계 금액 23,903,990

[특기사항]
* 제품 납기 받주 후 2주일 이내
* 결제 조건: 납품전 현금결제 기준
  (계좌번호: IBK 가입은행 326-047557-04-019, 예금주: 넥싸이트)
* 견적 유효 기간: 견적일로부터 30일
* 유지보수: 납품일로부터 무상 AVS 1년, 중장기통비 별도
  고객사로부터 불량제품을 동일한 후, 서비스에 고객사로 물건을 전달하는 방식을 현재로 함(배송방식,택배)
  서비스 자체 제공품은 고객사에서 보유하는 것을 원칙으로 함.
* 견적 제품은 부품 수입 일정에 따라 납기일 변동이 있을 수 있습니다.
* 반품 정책: 넥싸이트의 대한 제품은 구매자의 주문에 의해 수입되기 때문에 반품 및 교환이 불가능합니다.
## WAS Server

### 견적서

한국정보통신기술협회 귀하

메뉴얼의 기반에 깔아드리므로, 아래와 같이 견적합니다.

<table>
<thead>
<tr>
<th>품명</th>
<th>규격</th>
<th>단위</th>
<th>수량</th>
<th>제안 단가</th>
<th>제안 금액</th>
</tr>
</thead>
<tbody>
<tr>
<td>워크스테이션 PC</td>
<td>A6TBCAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>타입</td>
<td>타워형</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>XEON E3-1270V5, 3.6GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>운영체제</td>
<td>Windows 10 pro Workstations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>메인메모리</td>
<td>16GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>하드디스크용량</td>
<td>1TB + 250GB(SDD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>그래픽</td>
<td>Intel HD Graphics 530</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>메인보드</td>
<td>Gigabyte X150M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB 포트</td>
<td>USB 3.0 2EA / USB 2.0 2EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAN 규격</td>
<td>10/100/1000(Mbps)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>제조사 무상 유지보수</td>
<td>3년 / 7 x 24 x 4 Care Pack (3-yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|              |                  |      | 2   | 1,925,000 | 3,850,000 |

|                |                  |      |      |          |          |

```
전체 금액 (V.A.T 포함) W3,850,000
```

* 정책당 강 : 공공사업자 공공경정1팀 김경민 대리 TEL:031-698-8954, FAX:031-698-8900, HP : 010-9542-7798

© 2019 Telecommunications Technology Association. All rights reserved.
## UNIWIDETechnologies, Inc.

**서울시 구로구 디지털로26길5, 1404호 (에이스하이엔드타워 1층)**

대표이사 : 우종운
TEL : 070-7306-0515
FAX : 02-866-0037

기술연구소
전화번호 : 070-7306-0515
유대전화 : 010-8770-5483
이메일 : kyuchel@uniwide.co.kr

---

**견적 일자: UWT19 - 0910 - 101**

수신: 한국정보통신기술협회

납품 일자: 고객 요청 시,

견적유효기간: 견적 후 7일

결제 조건: 납품 후 즉시 현금

무상유지보수: 3년

---

## 공급 금액

```
공급 금액: 129,800,000원(부가세 별도)
모델: FCH2800
```

---

### PART NUMBER

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>제품명</th>
<th>수량</th>
<th>도입 수량</th>
<th>공급 단가</th>
<th>공급 합가</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCH2800</td>
<td>All Flash Storage - FCH2800</td>
<td>1</td>
<td>1</td>
<td>72,250,000</td>
<td>₩72,250,000</td>
</tr>
<tr>
<td>T0001-0117-00</td>
<td>FCH2800 Controller Device</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-01</td>
<td>Back-end Bus Adapter 12G SAS</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-02</td>
<td>16G 8-Port Host Bus Adapter</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-03</td>
<td>Cache Interconnect Adapter</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-04</td>
<td>Cache Memory DDR-3 (32GB)</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-05</td>
<td>FCH2800 Flash Disk Drive Expansion Unit</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-06</td>
<td>FCH2800 controller cpu Board</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-07</td>
<td>Rack 600x1200x210 mm (WxDxH) 42U</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0001-0117-08</td>
<td>Storage Management SW</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61001-0001-00</td>
<td>UTP- CAT5e Ethernet Cable 1M</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42119-0005-00</td>
<td>Power Cord, NICETECH 2.5M</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKC-F8101-1R6FM.P</td>
<td>1.6TB Flash Memory Disk Drive</td>
<td>8</td>
<td>8</td>
<td>3,900,000</td>
<td>₩31,200,000</td>
</tr>
<tr>
<td></td>
<td>3-yrs 24x7x4hrs Onsite Support Service</td>
<td>1</td>
<td>1</td>
<td>26,350,000</td>
<td>₩26,350,000</td>
</tr>
</tbody>
</table>

---

**제안 가격**

```
₩129,800,000
```

**부가세**

```
₩12,980,000
```

**부가세 포함 가격**

```
₩142,780,000
```

본견적서를 발주를 진행하고 싶으시다면 명판 및 직인을 날인하시어 팩스로 보내주십시오.

---

<table>
<thead>
<tr>
<th>명판</th>
<th>직인</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
下記과 같이 見積합니다.

(목) 락플레이스
대표이사 서 동식

ITEM DESCRIPTION

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>수량</th>
<th>소비자가</th>
<th>공급단가</th>
<th>공급합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH0004F3</td>
<td>Red Hat Enterprise Linux Server, Standard (Physical or Virtual Nodes) 3Year support : Easy ISOs: OS, Source, Documentation ISO Images 가상화 Guest OS : 2guests Red Hat Network 서비스 : 3년 Phone,email Support : 09:00 ~ 17:00 Scope of Coverage : Standard Maximum Memory Support: Unlimited</td>
<td>1</td>
<td>3,975,000</td>
<td>2,385,000</td>
<td>2,385,000</td>
</tr>
</tbody>
</table>

연간기술지원

| RSC-LSF3 | rockPLACE Support Carepack - Linux Standard (3년) per Server 3 Year, 24x7, 4hr response 이해,설치, 운영지원, 현장지원 서비스 On Site Support - Total 연간 10회 Support (아래 지원내역에 준함) - Installation & Startup Service Included - Problem tracking/Emergency assistance - Update, Patch 작업 지원 - 서비스, 시스템 환경, 네트워크 환경 설정 변경 지원 - 인수 시험, 성능 시험, 비상 복구 훈련 지원 - MRG Realtime 기술지원 포함 | 1 | 6,000,000 | 2,000,000 | 2,000,000 |

소 계 금 액 | | | | | 4,385,000 |
<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>수량</th>
<th>소비자가</th>
<th>공급단가</th>
<th>공급합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEB</td>
<td>Red Hat JBoss Web Server</td>
<td>2</td>
<td>2,086,000</td>
<td>1,460,000</td>
<td>2,920,000</td>
</tr>
</tbody>
</table>

연간기술지원

<table>
<thead>
<tr>
<th>연간 방문 기술지원 (옵션)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSC-JSF3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

소 계 금 액 8,920,000

합 계

부가세 1,330,500

합 계(부가세포함) 14,635,500

Remarks

1. Red Hat 제품은 연간 Subscription 제품이며, 기간이 만료되실 경우 Renewal을 하셔야합니다.
2. 발주 시에는 반드시 고객정보(엔드유저명, 담당자, 연락처, Email)가 있어야 합니다.
3. OnSite 방문지원이 필요할 경우에는 케어팩을 구매하시아 합니다.
상품상세정보

네트워크스위치

가격: 1,900,000원

주요부품: [수리내역]
주요부품: [수리내역]
주요부품: [수리내역]

device: [수리내역]

 Pri ce
# Quotation

**TTA 貴中**

Title : TPC-C Performance & Quality Authentication

**참조 : 아태식 선임**

* 건적일자 : 2019년 09월 04일
* 유효기간 : 건적일로부터 3개월

---

### *Goldilocks Standard Edition for LINUX 1씩*

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Unit List Price</th>
<th>Q’ty</th>
<th>Total Amount Price</th>
<th>Offer Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goldilocks Ver 3.1 DBMS Standard Edition</td>
<td>₩96,000,000</td>
<td>1 Set(s)</td>
<td>₩96,000,000</td>
<td>₩32,000,000</td>
</tr>
<tr>
<td></td>
<td>- Query Processes Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Storage Management Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goldilocks DBMS License Fee</td>
<td></td>
<td></td>
<td>Goldilocks License Proposal Price</td>
<td>₩32,000,000</td>
</tr>
<tr>
<td>2</td>
<td>DBMS Implementation &amp; Supports</td>
<td>₩10,000,000</td>
<td>3 Set(s)</td>
<td>₩30,000,000</td>
<td>₩14,400,000</td>
</tr>
<tr>
<td></td>
<td>Goldilocks Technical Supports Fee(3yr)</td>
<td></td>
<td></td>
<td>Support Proposal Price</td>
<td>₩14,400,000</td>
</tr>
<tr>
<td></td>
<td>Total Amount(VAT Exclude)</td>
<td>₩126,000,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Goldilocks Total Amount (Offer Price) ₩46,400,000

* For Technical supports, it indicates 24 x 7 x 4 hours of support