TPC Benchmark™ H
Full Disclosure Report
for
IBM® System x®3850 X6
using
Microsoft® SQL Server® 2014
Enterprise Edition
and
Microsoft Windows Server® 2012
R2 Standard Edition

TPC-H™ Version 2.16.0

First Edition
Submitted for Review
April 16, 2014
First Edition – April 2014

The information contained in this document is distributed on an AS IS basis without any warranty either expressed or implied. The use of this information or the implementation of any of these techniques is the customer’s responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While each item has been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that only IBM’s licensed program may be used; any functionally equivalent program may be used.

This publication was produced in the United States. IBM may not offer the products, services, or features discussed in this document in other countries, and the information is subject to change without notice. Consult your local IBM representative for information on products and services available in your area.

© Copyright International Business Machines Corporation 2014. All rights reserved.

Permission is hereby granted to reproduce this document in whole or in part, provided the copyright notice as printed above is set forth in full text on the title page of each item reproduced.

U.S. Government Users - Documentation related to restricted rights: Use, duplication, or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Trademarks
IBM, the IBM logo, System x and System Storage are trademarks or registered trademarks of International Business Machines Corporation.

The following terms used in this publication are trademarks of other companies as follows: TPC Benchmark, TPC-H, QppH, QthH and QphH are trademarks of Transaction Processing Performance Council; Intel and Xeon are trademarks or registered trademarks of Intel Corporation; Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation. Other company, product, or service names, which may be denoted by two asterisks (**), may be trademarks or service marks of others.

Notes
1 GHz and MHz only measures microprocessor internal clock speed, not application performance. Many factors affect application performance.

2 When referring to hard disk capacity, GB, or gigabyte, means one thousand million bytes. Total user-accessible capacity may be less.
Total System Cost

IBM System x® 3850 X6

Microsoft® SQL Server® 2014

Total System Cost	**Composite Query-per-Hour Metric**	**Price/Performance**
$705,444 USD | 519,976.1 QphH @ 1000GB | $1.36 per QphH @1000GB

Database Size

<table>
<thead>
<tr>
<th>Database Size</th>
<th>Database Manager</th>
<th>Operating System</th>
<th>Other software</th>
<th>Availability</th>
</tr>
</thead>
</table>

Query Times

<table>
<thead>
<tr>
<th>Query</th>
<th>Power</th>
<th>AvgThruput</th>
<th>Thruput</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1</td>
<td>27.9</td>
<td>36.0</td>
<td>153.4</td>
</tr>
<tr>
<td>Q19</td>
<td>13.5</td>
<td>29.3</td>
<td>48.4</td>
</tr>
<tr>
<td>Q17</td>
<td>5.3</td>
<td>37.3</td>
<td>69.7</td>
</tr>
<tr>
<td>Q15</td>
<td>25.5</td>
<td>22.2</td>
<td>25.9</td>
</tr>
<tr>
<td>Q13</td>
<td>12.4</td>
<td>58.4</td>
<td></td>
</tr>
<tr>
<td>Q11</td>
<td>31.2</td>
<td>42.7</td>
<td>49.5</td>
</tr>
<tr>
<td>Q9</td>
<td>28.0</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>35.4</td>
<td>37.1</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>3.3</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Database Load Time: 06:48:50

<table>
<thead>
<tr>
<th>Total Data Storage</th>
<th>Database Size: 13.8</th>
<th>Load Included Backup: Y</th>
<th>Memory Ratio=153.6%</th>
</tr>
</thead>
</table>

RAID (Base Tables Only): N

<table>
<thead>
<tr>
<th>RAID (Base Tables and Auxiliary Data Structures): N</th>
<th>RAID (All): N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Intel Xeon Processor E7-4890 v2, 2.80GHz, 37.5MB L3 Cache</td>
</tr>
<tr>
<td>Processors/Core/Threads</td>
<td>4/60/120</td>
</tr>
<tr>
<td>Memory</td>
<td>16GB PC3L-12800 ECC DDR3 1600MHz LP RDIMM</td>
</tr>
<tr>
<td>Disk Controllers</td>
<td>IBM ServeRAID-M5210 SAS/SATA Controller</td>
</tr>
<tr>
<td>Disk Drives</td>
<td>1</td>
</tr>
<tr>
<td>Disk Storage</td>
<td>200GB SATA 2.5” MLC G3HS Enterprise SSD</td>
</tr>
<tr>
<td>2</td>
<td>400GB SATA 2.5” MLC G3HS Enterprise SSD</td>
</tr>
<tr>
<td>2</td>
<td>IBM 786GB High IOPS MLC Mono Adapter</td>
</tr>
<tr>
<td>5</td>
<td>IBM 1.2TB High IOPS MLC Mono Adapter</td>
</tr>
<tr>
<td>2</td>
<td>IBM 2.4TB High IOPS MLC Duo Adapter</td>
</tr>
<tr>
<td>Total Disk Storage</td>
<td>13829GB</td>
</tr>
<tr>
<td>Description</td>
<td>Part Number</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Server Hardware</td>
<td></td>
</tr>
<tr>
<td>IBM System x3850 X6 Configure-To-Order, includes:</td>
<td>3837AC1</td>
</tr>
<tr>
<td>x3850 X6 4U Chassis + Midplane</td>
<td>A4BL, A4A4</td>
</tr>
<tr>
<td>X6 Compute Book with Intel Xeon Processor E7-4890 v2</td>
<td>A4AU, A4BA</td>
</tr>
<tr>
<td>X6 Primary I/O Book + X6 Storage Book</td>
<td>A4A0, A4A1</td>
</tr>
<tr>
<td>X6 Half-length I/O Book</td>
<td>A4A2</td>
</tr>
<tr>
<td>4x 2.5"HDD Riser</td>
<td>A4A6</td>
</tr>
<tr>
<td>ServerRAID MS210 SAS/SATA Controller for IBM System x</td>
<td>A5YZ</td>
</tr>
<tr>
<td>S3700 400GB SATA 2.5" MLC G3HS Enterprise SSD</td>
<td>A4U4</td>
</tr>
<tr>
<td>S3700 200GB SATA 2.5" MLC G3HS Enterprise SSD</td>
<td>A4U3</td>
</tr>
<tr>
<td>Intel X540 ML2 Dual Port 10GbaseT Adapter</td>
<td>A4KP</td>
</tr>
<tr>
<td>IBM 1400W HE Redundant Power Supply</td>
<td>A54E</td>
</tr>
<tr>
<td>IBM System x Rail Kit</td>
<td>A4AA</td>
</tr>
<tr>
<td>Power Cable</td>
<td>6311</td>
</tr>
<tr>
<td>16GB PC3L-12800 CL11 ECC DDR3 1600MHz LP RDIMM</td>
<td>A3QM</td>
</tr>
<tr>
<td>IBM 785GB High IOPS MLC Mono Adapter</td>
<td>A3J4</td>
</tr>
<tr>
<td>IBM 1.2TB High IOPS MLC Mono Adapter</td>
<td>A3DY</td>
</tr>
<tr>
<td>IBM 2.4TB High IOPS MLC Duo Adapter</td>
<td>A3DZ</td>
</tr>
<tr>
<td>IBM Intl Pro Keyboard USB - US English 103P RoHS v2</td>
<td>004M800</td>
</tr>
<tr>
<td>IBM 2-Button Optical Mouse - Black - USB</td>
<td>40K9200</td>
</tr>
<tr>
<td>X6 Full-length I/O Book</td>
<td>44X4051</td>
</tr>
<tr>
<td>ServicePac for 3-Year 24x7x4 Support (x3850 X6)</td>
<td>00GW889</td>
</tr>
<tr>
<td>Hanns-G 16" Widescreen LED LCD Monitor (2 spares)</td>
<td>HL161ABB</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td>Server Software</td>
<td></td>
</tr>
<tr>
<td>SQL Server 2014 Enterprise Edition</td>
<td>7JQ-00750</td>
</tr>
<tr>
<td>Windows Server 2012 R2 Standard Edition</td>
<td>P73-06284</td>
</tr>
<tr>
<td>Windows Server 2012 R2 Client Access License</td>
<td>R18-04280</td>
</tr>
<tr>
<td>Microsoft Problem Resolution Services</td>
<td>N/A</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>IBM S2 42U Standard Rack</td>
<td>93074RX</td>
</tr>
<tr>
<td>ServicePac for 3-Year 24x7x4 Support (Rack)</td>
<td>41L2760</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Microsoft Open Program Discount Schedule: 32.39% 2

Pricing: 1 - IBM 1-866-883-8901; 2 - Microsoft; 3 - newegg.com

Three-Year Cost of Ownership USD:

- $705,444
- QphH@1000GB: 519,976.10
- $ USD/QphH@1000GB: $1.36

Benchmark results and test methodology audited by Francois Raab for InfoSizing, Inc. (www.sizing.com)

Prices used in TPC benchmarks reflect the actual prices a customer would pay for a one-time purchase of the stated components. Individually negotiated discounts are not permitted. Special prices based on assumptions about past or future purchases are not permitted. All discounts reflect standard pricing policies for the listed components. For complete details, see the pricing section of the TPC benchmark specifications. If you find that stated prices are not available according to these terms, please inform the TPC at pricing@tpc.org. Thank you.
Measurement Results

Database Scale Factor: 1000
Total Data Storage/Database Size: 13.8
Memory/Database Size: 153.6
Start of Database Load: 04/09/14 23:11:59
End of Database Load: 04/10/14 06:00:49
Database Load Time: 06:48:50
Query Streams for Throughput Test: 7
TPC-H Power: 695,445.5
TPC-H Throughput: 388,779.8
TPC-H Composite Query-per-Hour (QphH@1000GB): 519,976.1
Total System Price over 3 Years: $705,444 USD
TPC-H Price/Performance Metric ($/QphH@1000GB): $1.36 USD

Measurement Interval

Measurement Interval in Throughput Test (Ts) = 1,426

Duration of Stream Execution:

<table>
<thead>
<tr>
<th>Power Run</th>
<th>Seed</th>
<th>Query Start Time</th>
<th>Query End Time</th>
<th>Duration (sec)</th>
<th>RF1 Start Time</th>
<th>RF1 End Time</th>
<th>RF2 Start Time</th>
<th>RF2 End Time</th>
</tr>
</thead>
</table>

©IBM Corporation TPC-H Benchmark Full Disclosure Report – April 2014
<table>
<thead>
<tr>
<th>Query</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream 00</td>
<td>4.6</td>
<td>0.8</td>
<td>5.4</td>
<td>6.5</td>
<td>7.5</td>
<td>0.6</td>
<td>2.8</td>
<td>4.1</td>
<td>15.9</td>
<td>15.7</td>
<td>4.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Stream 01</td>
<td>11.0</td>
<td>4.6</td>
<td>51.8</td>
<td>11.3</td>
<td>53.0</td>
<td>43.8</td>
<td>91.8</td>
<td>18.0</td>
<td>19.2</td>
<td>51.7</td>
<td>11.4</td>
<td>56.7</td>
</tr>
<tr>
<td>Stream 02</td>
<td>13.1</td>
<td>4.5</td>
<td>32.0</td>
<td>30.7</td>
<td>49.6</td>
<td>42.6</td>
<td>52.2</td>
<td>37.9</td>
<td>32.6</td>
<td>61.5</td>
<td>16.9</td>
<td>25.8</td>
</tr>
<tr>
<td>Stream 03</td>
<td>8.0</td>
<td>1.6</td>
<td>5.4</td>
<td>34.2</td>
<td>64.8</td>
<td>29.2</td>
<td>56.3</td>
<td>81.3</td>
<td>21.8</td>
<td>99.7</td>
<td>14.8</td>
<td>16.0</td>
</tr>
<tr>
<td>Stream 04</td>
<td>4.7</td>
<td>5.7</td>
<td>33.6</td>
<td>51.6</td>
<td>34.4</td>
<td>43.5</td>
<td>42.1</td>
<td>57.6</td>
<td>40.5</td>
<td>52.8</td>
<td>16.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Stream 05</td>
<td>5.4</td>
<td>1.5</td>
<td>68.1</td>
<td>48.7</td>
<td>54.0</td>
<td>27.5</td>
<td>45.1</td>
<td>20.0</td>
<td>44.7</td>
<td>84.8</td>
<td>17.4</td>
<td>22.3</td>
</tr>
<tr>
<td>Stream 06</td>
<td>16.1</td>
<td>3.1</td>
<td>66.8</td>
<td>38.4</td>
<td>41.5</td>
<td>22.5</td>
<td>17.9</td>
<td>71.7</td>
<td>48.6</td>
<td>70.0</td>
<td>8.6</td>
<td>60.8</td>
</tr>
<tr>
<td>Stream 07</td>
<td>5.2</td>
<td>4.6</td>
<td>33.9</td>
<td>62.0</td>
<td>77.6</td>
<td>14.0</td>
<td>55.7</td>
<td>51.1</td>
<td>26.2</td>
<td>31.0</td>
<td>8.6</td>
<td>29.7</td>
</tr>
<tr>
<td>Minimum</td>
<td>4.6</td>
<td>0.8</td>
<td>5.4</td>
<td>6.5</td>
<td>7.5</td>
<td>0.6</td>
<td>2.8</td>
<td>4.1</td>
<td>15.9</td>
<td>15.7</td>
<td>4.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Average</td>
<td>8.5</td>
<td>3.3</td>
<td>37.1</td>
<td>35.4</td>
<td>47.8</td>
<td>28.0</td>
<td>45.5</td>
<td>42.7</td>
<td>31.2</td>
<td>58.4</td>
<td>12.4</td>
<td>27.2</td>
</tr>
<tr>
<td>Maximum</td>
<td>16.1</td>
<td>5.7</td>
<td>68.1</td>
<td>62.0</td>
<td>77.6</td>
<td>43.8</td>
<td>91.8</td>
<td>81.3</td>
<td>48.6</td>
<td>99.7</td>
<td>17.4</td>
<td>60.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>Q13</th>
<th>Q14</th>
<th>Q15</th>
<th>Q16</th>
<th>Q17</th>
<th>Q18</th>
<th>Q19</th>
<th>Q20</th>
<th>Q21</th>
<th>Q22</th>
<th>RF1</th>
<th>RF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream 00</td>
<td>20.0</td>
<td>1.2</td>
<td>1.6</td>
<td>3.2</td>
<td>2.8</td>
<td>24.3</td>
<td>2.5</td>
<td>4.5</td>
<td>18.5</td>
<td>4.3</td>
<td>34.4</td>
<td>27.8</td>
</tr>
<tr>
<td>Stream 01</td>
<td>24.9</td>
<td>35.2</td>
<td>26.4</td>
<td>6.8</td>
<td>9.2</td>
<td>37.0</td>
<td>5.1</td>
<td>56.2</td>
<td>60.5</td>
<td>213.7</td>
<td>35.8</td>
<td>28.0</td>
</tr>
<tr>
<td>Stream 02</td>
<td>26.6</td>
<td>44.2</td>
<td>45.7</td>
<td>5.5</td>
<td>62.8</td>
<td>85.3</td>
<td>11.8</td>
<td>14.7</td>
<td>29.0</td>
<td>242.3</td>
<td>35.5</td>
<td>28.5</td>
</tr>
<tr>
<td>Stream 03</td>
<td>21.1</td>
<td>33.0</td>
<td>28.0</td>
<td>5.5</td>
<td>85.7</td>
<td>72.0</td>
<td>4.3</td>
<td>28.9</td>
<td>30.3</td>
<td>231.8</td>
<td>35.3</td>
<td>28.1</td>
</tr>
<tr>
<td>Stream 04</td>
<td>24.3</td>
<td>18.8</td>
<td>38.5</td>
<td>4.4</td>
<td>19.5</td>
<td>55.1</td>
<td>22.9</td>
<td>11.9</td>
<td>71.3</td>
<td>238.4</td>
<td>33.7</td>
<td>28.1</td>
</tr>
<tr>
<td>Stream 05</td>
<td>37.0</td>
<td>16.5</td>
<td>25.1</td>
<td>9.6</td>
<td>21.6</td>
<td>77.7</td>
<td>24.7</td>
<td>34.5</td>
<td>89.7</td>
<td>41.7</td>
<td>39.1</td>
<td>27.5</td>
</tr>
<tr>
<td>Stream 06</td>
<td>28.5</td>
<td>26.8</td>
<td>34.7</td>
<td>6.0</td>
<td>84.4</td>
<td>100.2</td>
<td>31.5</td>
<td>32.9</td>
<td>25.5</td>
<td>7.6</td>
<td>38.5</td>
<td>27.5</td>
</tr>
<tr>
<td>Stream 07</td>
<td>24.8</td>
<td>1.6</td>
<td>4.1</td>
<td>9.6</td>
<td>12.0</td>
<td>106.2</td>
<td>5.0</td>
<td>50.6</td>
<td>62.3</td>
<td>247.4</td>
<td>35.5</td>
<td>27.9</td>
</tr>
<tr>
<td>Minimum</td>
<td>20.0</td>
<td>1.2</td>
<td>1.6</td>
<td>3.2</td>
<td>2.8</td>
<td>24.3</td>
<td>2.5</td>
<td>4.5</td>
<td>18.5</td>
<td>4.3</td>
<td>33.7</td>
<td>27.5</td>
</tr>
<tr>
<td>Average</td>
<td>25.9</td>
<td>22.2</td>
<td>25.5</td>
<td>6.3</td>
<td>37.3</td>
<td>69.7</td>
<td>13.5</td>
<td>29.3</td>
<td>48.4</td>
<td>153.4</td>
<td>36.0</td>
<td>27.9</td>
</tr>
<tr>
<td>Maximum</td>
<td>37.0</td>
<td>44.2</td>
<td>45.7</td>
<td>9.6</td>
<td>85.7</td>
<td>106.2</td>
<td>31.5</td>
<td>56.2</td>
<td>89.7</td>
<td>247.4</td>
<td>39.1</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Table of Contents

Preface ..9

General Items ..10
 Benchmark Sponsor ...10
 Parameter Settings ...10
 Configuration Diagrams ...10

Clause 1 – Logical Database Design Related Items ..12
 Database Table Definitions ...12
 Database Physical Organization ..12
 Horizontal/Vertical Partitioning ..12
 Replication ...12

Clause 2 – Queries and Update Functions Related Items ...13
 Query Language ..13
 Random Number Generation ...13
 Substitution Parameters Generation ..13
 Query Text and Output Data from Database ...13
 Query Substitution Parameters and Seeds Used ..13
 Query Isolation Level ...13
 Refresh Function Implementation ..14

Clause 3 – Database System Properties Related Items ...15
 Atomicity Requirements ..15
 Consistency Requirements ..15
 Isolation Requirements ..17
 Durability Requirements ..18

Clause 4 – Scaling and Database Population Related Items ...20
 Initial Cardinality of Tables ..20
 Distribution of Tables and Logs ...20
 Database Partition / Replication Mapping ...21
 RAID Implementation ..21
 DBGEM Modifications ..22
 Database Load Time ...22
 Data Storage Ratio ...22
 Database Load Mechanism Details and Illustration ..22
 Qualification Database Configuration ..23

Clause 5 – Performance Metrics and Execution Rules Related Items ..24
 System Activity between Load and Performance Tests ...24
 Steps in the Power Test ..24
 Timing Intervals for Each Query and Refresh Function ...24
 Number of Streams for the Throughput Test ...24
 Start and End Date/Times for Each Query Stream ...24
 Total Elapsed Time for the Measurement Interval ...24
 Refresh Function Start Date/Time and Finish Date/Time ..24
 Timing Intervals for Each Query and Each Refresh Function for Each Stream25
 Performance Metrics ...25
 Performance Metric and Numerical Quantities from Both Runs ...25
 System Activity between Tests ..25

Clause 6 – SUT and Driver Implementation Related Items ...26
 Driver ..26
 Implementation-Specific Layer ..26
 Profile-Directed Optimization ..26

Clause 7 – Pricing Related Items ...27
 Hardware and Software Components ..27
 Three-Year Cost of System Configuration ...27

©IBM Corporation TPC-H Benchmark Full Disclosure Report – April 2014 7
TPC Benchmark H Standard Specification was developed by the Transaction Processing Performance Council (TPC). It was released on February 26, 1999, and most recently revised (Revision 2.16.0). This is the full disclosure report for benchmark testing of the IBM System x3850 X6 according to the TPC Benchmark H Standard Specification.

The TPC Benchmark H is a decision support benchmark. It consists of a suite of business-oriented ad hoc queries and concurrent data modifications. The queries and the data populating the database have been chosen to have broad industrywide relevance while maintaining a sufficient degree of ease of implementation. This benchmark illustrates decision support systems that:

- Examine large volumes of data;
- Execute queries with a high degree of complexity;
- Give answers to critical business questions.

TPC-H evaluates the performance of various decision support systems by the execution of a set of queries against a standard database under controlled conditions. The TPC-H queries:

- Give answers to real-world business questions;
- Simulate generated ad-hoc queries (e.g., via a point-and-click GUI interface);
- Are far more complex than most OLTP transactions;
- Include a rich breadth of operators and selectivity constraints;
- Generate intensive activity on the part of the database server component of the system under test;
- Are executed against a database complying with specific population and scaling requirements;
- Are implemented with constraints derived from staying closely synchronized with an on-line production database.

The TPC-H operations are modeled as follows:

- The database is continuously available 24 hours a day, 7 days a week, for ad-hoc queries from multiple end users and data modifications against all tables, except possibly during infrequent (e.g., once a month) maintenance sessions.
- The TPC-H database tracks, possibly with some delay, the state of the OLTP database through ongoing refresh functions, which batch together a number of modifications impacting some part of the decision support database.
- Due to the worldwide nature of the business data stored in the TPC-H database, the queries and the refresh functions may be executed against the database at any time, especially in relation to each other. In addition, this mix of queries and refresh functions is subject to specific ACIDity requirements, since queries and refresh functions may execute concurrently.
- To achieve the optimal compromise between performance and operational requirements, the database administrator can set, once and for all, the locking levels and the concurrent scheduling rules for queries and refresh functions.

The minimum database required to run the benchmark holds business data from 10,000 suppliers. It contains almost 10 million rows representing a raw storage capacity of about 1 gigabyte. Compliant benchmark implementations may also use one of the larger permissible database populations (e.g., 100 gigabytes), as defined in Clause 4.1.3.

The performance metrics reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@Size), and reflects multiple aspects of the capability of the system to process queries. These aspects include the selected database size against which the queries are executed, the query processing power when queries are submitted by a single stream, and the query throughput when queries are submitted by multiple concurrent users. The TPC-H Price/Performance metric is expressed as $/QphH@Size. To be compliant with the TPC-H standard, all references to TPC-H results for a given configuration must include all required reporting components (see Clause 5.4.6). The TPC believes that comparisons of TPC-H results measured against different database sizes are misleading and discourages such comparisons.

The TPC-H database must be implemented using a commercially available database management system (DBMS), and the queries executed via an interface using dynamic SQL. The specification provides for variants of SQL, as implementers are not required to have implemented a specific SQL standard in full.

Benchmarks results are highly dependent upon workload, specific application requirements, and systems design and implementation. Relative system performance will vary as a result of these and other factors. Therefore, TPC-H should not be used as a substitute for specific customer application benchmarking when critical capacity planning and/or product evaluation decisions are contemplated.
General Items

Benchmark Sponsor

A statement identifying the benchmark sponsor(s) and other participating companies must be provided.

This benchmark was sponsored by IBM Corporation.

Parameter Settings

Settings must be provided for all customer-tunable parameters and options that have been changed from the defaults found in actual products, including but not limited to:

- Database tuning options
- Optimizer/Query execution options
- Query Processing tool/language configuration parameters
- Recovery/commit options
- Consistency/locking options
- Operating system and configuration parameters
- Configuration parameters and options for any other software component incorporated into the pricing structure
- Compiler optimization options.

See the Supporting Files, “Tunable Parameters,” which contains a list of all database parameters and operating system parameters.

Configuration Diagrams

Diagrams of both measured and priced configurations must be provided, accompanied by a description of the differences. This includes, but is not limited to:

- Number and type of processors
- Size of allocated memory and any specific mapping/partitioning of memory unique to the test and type of disk units (and controllers, if applicable)
- Number and type of disk units (and controllers, if applicable)
- Number of channels or bus connections to disk units, including their protocol type
- Number of LAN (e.g., Ethernet) connections, including routers, workstations, terminals, etc., that were physically used in the test or are incorporated into the pricing structure
- Type and run-time execution location of software components (e.g., DBMS, query processing tools/languages, middleware components, software drivers, etc.).

The configuration diagram for the tested and priced system is provided on the following page.
Measured Configuration

The measured and priced configurations are the same. They contained:

- Four Intel Xeon Processor E7-4890 v2 (2.80GHz, 3.75MB L2 cache and 37.5MB L3 cache)
- Ninety-six 16GB PC3L-12800 ECC DDR3 1600MHz LP RDIMM
- One Intel X540 ML2 Dual Port 10GbaseT Adapter
- One ServeRAID M5210 SAS/SATA Controller
- Two S3700 400GB SATA 2.5” MLC G3HS Enterprise SSD
- Two S3700 200GB SATA 2.5” MLC G3HS Enterprise SSD
- Two IBM 785GB High IOPS MLC Mono Adapter
- Five IBM 1.2TB High IOPS MLC Mono Adapter
- Two IBM 2.4TB High IOPS MLC Duo Adapter
Clause 1 – Logical Database Design Related Items

Database Table Definitions

Listings must be provided for all table definition statements and all other statements used to set up the test and qualification databases. (8.1.2.1)

See the Supporting Files for the scripts that were used to set up the TPC-H test and qualification databases.

Database Physical Organization

The physical organization of tables and indexes within the test and qualification databases must be disclosed. If the column ordering of any table is different from that specified in Clause 1.4, it must be noted.

See the Supporting Files for the scripts that were used to create the indexes on the test and qualification databases.

No column reordering is used

Horizontal/Vertical Partitioning

Horizontal partitioning of tables and rows in the test and qualification databases must be disclosed (see Clause 1.5.4).

Horizontal partitioning on L_SHIPDATE and O_ORDERDATE is used and granularity is week.

Replication

Any replication of physical objects must be disclosed and must conform to the requirements of Clause 1.5.6).

Replication was not used.
Clause 2 – Queries and Update Functions Related Items

Query Language
The query language used to implement the queries must be identified.
SQL was the query language used.

Random Number Generation
The method of verification for the random number generation must be described unless the supplied DBGEN and QGEN were used.
The TPC-supplied DBGEN version 2.16.1 and QGEN version 2.16.1 were used to generate all database populations.

Substitution Parameters Generation
The method used to generate values for substitution parameters must be disclosed. If QGEN is not used for this purpose, then the source code of any non-commercial tool used must be disclosed. If QGEN is used, the version number, release number, modification number and patch level of QGEN must be disclosed.
The supplied QGEN version 2.16.1 was used to generate the substitution parameters.

Query Text and Output Data from Database
The executable query text used for query validation must be disclosed along with the corresponding output data generated during the execution of the query text against the qualification database. If minor modifications (see Clause 2.2.3) have been applied to any functional query definitions or approved variants in order to obtain executable query text, these modifications must be disclosed and justified. The justification for a particular minor query modification can apply collectively to all queries for which it has been used. The output data for the power and throughput tests must be made available electronically upon request.
See the Supporting Files for the query text and query output. The following modifications were used:
- In Q1, Q4, Q5, Q6, Q10, Q12, Q14, Q15 and Q20, the “dateadd” function is used to perform date arithmetic.
- In Q7, Q8 and Q9, the “datepart” function is used to extract part of a date (e.g., “YY”).
- In Q2, Q3, Q10, Q18 and Q21, the “top” function is used to restrict the number of output rows.
- In Q1, the “count_big” function is used in place of “count”.

Query Substitution Parameters and Seeds Used
All query substitution parameters used for all performance tests must be disclosed in tabular format, along with the seeds used to generate these parameters.
See the Supporting Files for the seed and query substitution parameters used.

Query Isolation Level
The isolation level used to run the queries must be disclosed. If the isolation level does not map closely to one of the isolation levels defined in Clause 3.4, additional descriptive detail must be provided.
The queries and transactions were run with repeatable read isolation level.
Refresh Function Implementation

The details of how the refresh functions were implemented must be disclosed (including source code of any non-commercial program used).

See the Supporting Files for the source code for the refresh function.
Clause 3 – Database System Properties Related Items

Atomicity Requirements
The system under test must guarantee that transactions are atomic; the system will either perform all individual operations on the data, or will assure that no partially completed operations leave any effects on the data. The results of the ACID tests must be disclosed, along with a description of how the ACID requirements were met. This includes disclosing the code written to implement the ACID Transaction and Query.

All ACID tests were conducted according to specifications. The Atomicity, Isolation, Consistency and Durability tests were performed on the IBM System x3850 X6 server. See the Supporting Files for the ACID transaction source code.

Atomicity of Completed Transactions
Perform the ACID transactions for a randomly selected set of input data and verify that the appropriate rows have been changed in the ORDER, LINEITEM and HISTORY tables.

The following steps were performed to verify the Atomicity of completed transactions.
1. The total price from the ORDER table and the extended price from the LINEITEM table were retrieved for a randomly selected order key.
2. The ACID Transaction was performed using the order key from step 1.
3. The ACID Transaction committed.
4. The total price from the ORDER table and the extended price from the LINEITEM table were retrieved for the same order key. It was verified that the appropriate rows had been changed.

Atomicity of Aborted Transactions
Perform the ACID transaction for a randomly selected set of input data, submitting a ROLLBACK of the transaction for the COMMIT of the transaction. Verify that the appropriate rows have not been changed in the ORDER, LINEITEM, and HISTORY tables.

The following steps were performed to verify the Atomicity of the aborted ACID transaction:
1. The total price from the ORDER table and the extended price from the LINEITEM table were retrieved for a randomly selected order key.
2. The ACID Transaction was performed using the order key from step 1. The transaction was stopped prior to the commit.
3. The ACID Transaction was ROLLED BACK.
4. The total price from the ORDER table and the extended price from the LINEITEM table were retrieved for the same order key used in steps 1 and 2. It was verified that the appropriate rows had not been changed.

Consistency Requirements
Consistency is the property of the application that requires any execution of transactions to take the database from one consistent state to another. A consistent state for the TPC-H database is defined to exist when:

\[\text{O_TOTALPRICE} = \sum (\text{L_EXTENDEDPRICE} \times (1 - \text{L_DISCOUNT}) \times (1 + \text{L_TAX})) \]

for each ORDER and LINEITEM defined by \((\text{O_ORDERKEY} = \text{L_ORDERKEY})\)
Consistency Tests

Verify that the ORDER and LINEITEM tables are initially consistent as defined in Clause 3.3.2.1, based on a random sample of at least 10 distinct values of O_ORDERKEY.

The following steps were performed to verify consistency:

1. The consistency of the ORDER and LINEITEM tables was verified based on a sample of O_ORDERKEYs.
2. One hundred ACID Transactions were submitted from each of eight execution streams.
3. The consistency of the ORDER and LINEITEM tables was reverified.
Isolation Requirements

Operations of concurrent transactions must yield results which are indistinguishable from the results which would be obtained by forcing each transaction to be serially executed to completion in some order.

Isolation Test 1 - Read-Write Conflict with Commit

This test demonstrates isolation for the read-write conflict of a read-write transaction and a read-only transaction when the read-write transaction is committed.

The following steps were performed to satisfy the test of isolation for a read-only and a read-write committed transaction:

1. An ACID Transaction was started for a randomly selected O_KEY, L_KEY and DELTA. The ACID Transaction was suspended prior to Commit.
2. An ACID query was started for the same O_KEY used in step 1. The ACID query blocked and did not see any uncommitted changes made by the ACID Transaction.
3. The ACID Transaction was resumed and committed.
4. The ACID query completed. It returned the data as committed by the ACID Transaction.

Isolation Test 2 - Read-Write Conflict with Rollback

This test demonstrates isolation for the read-write conflict of read-write transaction and read-only transaction when the read-write transaction is rolled back.

The following steps were performed to satisfy the test of isolation for read-only and a rolled back read-write transaction:

1. An ACID transaction was started for a randomly selected O_KEY, L_KEY and DELTA. The ACID Transaction was suspended prior to Rollback.
2. An ACID query was started for the same O_KEY used in step 1. The ACID query did not see any uncommitted changes made by the ACID Transaction.
3. The ACID Transaction was ROLLED BACK.
4. The ACID query completed.

Isolation Test 3 - Write-Write Conflict with Commit

This test demonstrates isolation for the write-write conflict of two update transactions when the first transaction is committed.

The following steps were performed to verify isolation of two update transactions:

1. An ACID Transaction T1 was started for a randomly selected O_KEY, L_KEY and DELTA. The ACID transaction T1 was suspended prior to Commit.
2. Another ACID Transaction T2 was started using the same O_KEY and L_KEY and a randomly selected DELTA.
3. T2 waited.
4. The ACID transaction T1 was allowed to Commit and T2 completed.
5. It was verified that:
 \[
 T2.L_{\text{EXTENDEDPRICE}} = T1.L_{\text{EXTENDEDPRICE}} + (\text{DELTA1} \times (T1.L_{\text{EXTENDEDPRICE}} / T1.L_{\text{QUANTITY}}))
 \]

Isolation Test 4 - Write-Write Conflict with Rollback

This test demonstrates isolation for write-write conflict of two update transactions when the first transaction is rolled back.

The following steps were performed to verify the isolation of two update transactions after the first one is rolled back:

1. An ACID Transaction T1 was started for a randomly selected O_KEY, L_KEY and DELTA. The ACID Transaction T1 was suspended prior to Rollback.
2. Another ACID Transaction T2 was started using the same O_KEY and L_KEY used in step 1 and a randomly selected DELTA.
3. T2 waited.
4. T1 was allowed to ROLLBACK and T2 completed.
5. It was verified that T2.L_EXTENDEDPRICE = T1.L_EXTENDEDPRICE.

Isolation Test 5 - Concurrent Read and Write Transactions on Different Tables

This test demonstrates the ability of read and write transactions affecting different database tables to make progress concurrently.

The following steps were performed:
1. An ACID Transaction T1 for a randomly selected O_KEY, L_KEY and DELTA. The ACID Transaction T1 was suspended prior to Commit.
2. Another ACID Transaction T2 was started using random values for PS_PARTKEY and PS_SUPPKEY.
3. T2 completed.
4. T1 completed and the appropriate rows in the ORDER, LINEITEM and HISTORY tables were changed.

Isolation Test 6 - Update Transactions during Continuous Read-Only Query Stream

This test demonstrates that the continuous submission of arbitrary (read-only) queries against one or more tables of the database does not indefinitely delay update transactions affecting those tables from making progress.

The following steps were performed:
1. An ACID Transaction T1 was started, executing Q1 against the qualification database. The substitution parameter was chosen from the interval [0..2159] so that the query ran for a sufficient amount of time.
2. Before T1 completed, an ACID Transaction T2 was started using randomly selected values of O_KEY, L_KEY and DELTA.
3. T2 completed before T1 completed.
4. It was verified that the appropriate rows in the ORDER, LINEITEM and HISTORY tables were changed.

Durability Requirements

The SUT must guarantee durability: the ability to preserve the effects of committed transactions and ensure database consistency after recovery from any one of the failures listed in Clause 3.5.3.

Permanent Unrecoverable Failure of Any Durable Medium

Guarantee the database and committed updates are preserved across a permanent irrecoverable failure of any single durable medium containing TPC-H database tables or recovery log tables.
The OS was stored on a RAID-1 protected array of 2 physical drives. The database files were stored on 10 non-raided IBM high IOPs drives. The log was stored on a 2-disk Raid1 array. The tests were conducted on the qualification database. The steps performed are shown below:

1. The database was backed up to the RAID-1 array.
2. The consistency of the ORDERS and LINEITEM tables were verified.
3. Eight streams of ACID transactions were started. Each stream executed a minimum of 100 transactions.
4. A checkpoint was issued.
5. While the test was running, one of the disks holding database table data was logically removed.
6. A checkpoint was issued to force a failure.
7. The 8 streams of ACID transactions failed and recorded their number of committed transaction in success files.
8. The database log was dumped to disk.
9. A new database drive was attached.
10. A database restore from back up was done.
11. A command was issued causing the database to run through its roll-forward recovery.
12. The success file and the HISTORY table counts were compared and were found to match.
13. The consistency of the ORDERS and LINEITEM tables were verified.

Loss of Log and System Crash Test

Guarantee the database and committed updates are preserved across an instantaneous interruption (system crash/system hang) in processing which requires the system to reboot to recover.

1. The consistency of the ORDERS and LINEITEM tables were verified.
2. Eight streams of ACID transactions were started. Each stream executed a minimum of 100 transactions.
3. While the test was running, one of the disks from the database log RAID-1 was physically removed.
4. It was determined that the test would still run with the loss of a log disk, the system was powered off.
5. When the power was restored, the system booted and the log drive was rebuilt.
6. When the drive finished rebuilding, the database was restarted.
7. The database went through a recovery period.
8. The success file and the HISTORY table counts were compared and were found to match.
9. The consistency of the ORDERS and LINEITEM tables were verified.

Memory Failure

Guarantee the database and committed updates are preserved across failure of all or part of memory (loss of contents).

See the previous section, “System Crash.”
Clause 4 – Scaling and Database Population Related Items

Initial Cardinality of Tables

The cardinality (e.g., the number of rows) of each table of the test database, as it existed at the completion of the database load (see Clause 4.2.5), must be disclosed.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Row Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>1,500,000,000</td>
</tr>
<tr>
<td>Lineitem</td>
<td>5,999,989,709</td>
</tr>
<tr>
<td>Customer</td>
<td>150,000,000</td>
</tr>
<tr>
<td>Part</td>
<td>200,000,000</td>
</tr>
<tr>
<td>Supplier</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Partsupp</td>
<td>800,000,000</td>
</tr>
<tr>
<td>Nation</td>
<td>25</td>
</tr>
<tr>
<td>Region</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4-1. Initial Cardinality of Tables

Distribution of Tables and Logs

The distribution of tables and logs across all media must be explicitly described.

Database files were spread out on the 11 drives split across the 9 IBM high IOPS PCIe adapters. Database log was configured on a Raid-1 2-disk array of 400GB SATA 2.5” SSDs. Tempdb was spread out on the IBM high IOPS drives also. The database and log distribution is shown in the table below.
Controller	Drives	RAID	Vol size GB	Format	Files	Volume
Slot 11 | 2x 200G | Raid-1 | 184 NTFS | OS, SQL | C:
ServeRaid M5210 | 2x 400G | Raid-1 | 370 NTFS | LOG | C:\mount\LOG
Slot 1 | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio1
IBM High IOPs PCIe adapter | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio2
Slot 2 | 1x 786GB | Raid 0 | 730 NTFS | RF Flat Files | C:\mount\Fio11
IBM High IOPs PCIe adapter
Slot 3 | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio3
IBM High IOPs PCIe adapter | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio5
Slot 4 | 1x 786GB | Raid 0 | 730 NTFS | Data, Tempdb | C:\mount\Fio10
IBM High IOPs PCIe adapter
Slot 5 | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio7
IBM High IOPs PCIe adapter
Slot 6 | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio6
IBM High IOPs PCIe adapter
Slot 7 | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio4
IBM High IOPs PCIe adapter
Slot 8 | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio9
IBM High IOPs PCIe adapter
Slot 9 | 1x 1.2TB | Raid 0 | 1116 NTFS | Data, Tempdb | C:\mount\Fio8
IBM High IOPs PCIe adapter
Totals | 13,829 | 12058 |

Database Partition / Replication Mapping

The mapping of database partitions/replications must be explicitly described.

The database was not replicated.

RAID Implementation

Implementations may use some form of RAID to ensure high availability. If used for data, auxiliary storage (e.g., indexes) or temporary space, the level of RAID must be disclosed for each device.

RAID-1 was used for log disks. RAID-1 was used for the Operating System/Database install disk. The database disks and the temporary tablespace were placed on non-raided drives.
DBGEN Modifications

Any modifications to the DBGEN (see Clause 4.2.1) source code must be disclosed. In the event that a program other than DBGEN was used to populate the database, it must be disclosed in its entirety.

The standard distribution DBGEN version 2.16.1 was used for database population. No modifications were made.

Database Load Time

The database load time for the test database (see Clause 4.3) must be disclosed.

The database load time was 06h 48m 50s.

Data Storage Ratio

The data storage ratio must be disclosed. It is computed as the ratio between the total amount of priced disk space and the chosen test database size as defined in Clause 4.1.3.

The calculation of the data storage ratio is shown in the following table.

<table>
<thead>
<tr>
<th>Disk Type</th>
<th>Number of Disks</th>
<th>Space per Disk</th>
<th>Total Disk Space</th>
<th>Scale Factor</th>
<th>Storage Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>200GB 1.8” SATA SSDs</td>
<td>2</td>
<td>200GB</td>
<td>200GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400GB 2.5” SATA SSDs</td>
<td>2</td>
<td>400GB</td>
<td>400GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>785GB IBM High IOPs MS class SSD PCIe adapters</td>
<td>2</td>
<td>786GB</td>
<td>1.56TB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2TB IBM high IOPs MLC adapter for IBM System x</td>
<td>5</td>
<td>1.2TB</td>
<td>6.0TB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4TB IBM high IOPs MLC DUO adapter for IBM System x</td>
<td>2</td>
<td>2.4TB</td>
<td>4.8TB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13,829GB</td>
<td>1000GB</td>
<td>13.8</td>
</tr>
</tbody>
</table>

The data storage ratio is 13.8, derived by dividing 13,829GB by the database size of 1000GB.

Database Load Mechanism Details and Illustration

The details of the database load must be disclosed, including a block diagram illustrating the overall process. Disclosure of the load procedure includes all steps: scripts, input and configuration files required to completely reproduce the test and qualification databases.

Flat files for each of the tables were created using DBGEN.

The tables were loaded as depicted in Figure 4.1.
Figure 4-1. Database Load Procedure

Qualification Database Configuration

Any differences between the configuration of the qualification database and the test database must be disclosed.

The qualification database used identical scripts and disk structure to create and load the data with adjustments for size difference.
Clause 5 – Performance Metrics and Execution Rules Related Items

System Activity between Load and Performance Tests

Any system activity on the SUT that takes place between the conclusion of the load test and the beginning of the performance test must be fully disclosed.

There was no activity between the load test and performance test.

Steps in the Power Test

The details of the steps followed to implement the power test (e.g., system reboot, database restart) must be disclosed.

The following steps were used to implement the power test:

1. RF1 Refresh function
2. Stream 00 Execution
3. RF2 Refresh function

Timing Intervals for Each Query and Refresh Function

The timing intervals for each query of the measured set and for both update functions must be reported for the power test.

See the Numerical Quantities Summary in the Executive Summary at the beginning of this report.

Number of Streams for the Throughput Test

The number of execution streams used for the throughput test must be disclosed.

Seven query streams and one refresh stream were used for the throughput test.

Start and End Date/Times for Each Query Stream

The start time and finish time for each query execution stream must be reported for the throughput test.

See the Numerical Quantities Summary in the Executive Summary at the beginning of this report.

Total Elapsed Time for the Measurement Interval

The total elapsed time for the measurement interval must be reported for the throughput test.

See the Numerical Quantities Summary in the Executive Summary at the beginning of this report.

Refresh Function Start Date/Time and Finish Date/Time

The start time and finish time for each update function in the update stream must be reported for the throughput test.

See the Numerical Quantities Summary in the Executive Summary at the beginning of this report.
Timing Intervals for Each Query and Each Refresh Function for Each Stream

The timing intervals for each query of each stream and for each update function must be reported for the throughput test.

See the Numerical Quantities Summary in the Executive Summary at the beginning of this report.

Performance Metrics

The computed performance metrics, related numerical quantities, and the price/performance metric must be reported.

See the Numerical Quantities Summary in the Executive Summary at the beginning of this report.

Performance Metric and Numerical Quantities from Both Runs

The performance metric and numerical quantities from both runs must be disclosed.

Two consecutive runs of the TPC-H benchmark were performed. The following table contains the results for both runs.

<table>
<thead>
<tr>
<th></th>
<th>QppH @ 1000GB</th>
<th>QthH @ 1000GB</th>
<th>QphH @ 1000GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run1</td>
<td>723,699.8</td>
<td>401,739.1</td>
<td>539,201.7</td>
</tr>
<tr>
<td>Run2</td>
<td>695,445.5</td>
<td>388,779.8</td>
<td>519,976.1</td>
</tr>
</tbody>
</table>

System Activity between Tests

Any activity on the SUT that takes place between the conclusion of Run1 and the beginning of Run2 must be disclosed.

There was no activity on the system between Run1 and Run2.
Clause 6 – SUT and Driver Implementation Related Items

Driver

A detailed textual description of how the driver performs its functions, how its various components interact and any product functionality or environmental setting on which it relies must be provided. All related source code, scripts and configurations must be disclosed. The information provided should be sufficient for an independent reconstruction of the driver.

The TPC-H benchmark was implemented using a Microsoft tool called StepMaster. StepMaster is a general purpose test tool which can drive ODBC and shell commands. Within StepMaster, the user designs a workspace corresponding to the sequence of operations (or steps) to be executed. When the workspace is executed, StepMaster records information about the run into a database as well as a log file for later analysis.

StepMaster provides a mechanism for creating parallel streams of execution. This is used in the throughput tests to drive the query and refresh streams. Each step is timed using a millisecond resolution timer. A timestamp T_1 is taken before beginning the operation and a timestamp T_2 is taken after completing the operation. These times are recorded in a database as well as a log file for later analysis.

Two types of ODBC connections are supported. A dynamic connection is used to execute a single operation and is closed when the operation finishes. A static connection is held open until the run completes and may be used to execute more than one step. A connection (either static or dynamic) can only have one outstanding operation at any time.

In TPC-H, static connections are used for the query streams in the power and throughput tests. StepMaster reads an Access database to determine the sequence of steps to execute. These commands are represented as the Implementation Specific Layer. StepMaster records its execution history, including all timings, in the Access database. Additionally, StepMaster writes a textual log file of execution for each run.

The stream refresh functions were executed using multiple batch scripts. The initial script is invoked by StepMaster, subsequent scripts are called from within the scripts.

The source for StepMaster and the RF Scripts is disclosed in the supported file archive.

Implementation-Specific Layer

If an implementation-specific layer is used, then a detailed description of how it performs its functions must be supplied, including any related source code or scripts. This description should allow an independent reconstruction of the implementation-specific layer.

See Driver section for details.

Profile-Directed Optimization

Profile-directed optimization was not used.
Clause 7 – Pricing Related Items

Hardware and Software Components

A detailed list of the hardware and software used in the priced system must be reported. Each item must have a vendor part number, description and release/revision level, and either general availability status or committed delivery date. If package-pricing is used, contents of the package must be disclosed. Pricing source(s) and effective date(s) must also be reported.

A detailed list of all hardware and software, including the 3-year price, is provided in the Executive Summary at the front of this report. The price quotations are included in Appendix A.

Three-Year Cost of System Configuration

The total 3-year price of the entire configuration must be reported, including hardware, software and maintenance charges. Separate component pricing is recommended. The basis of all discounts must be disclosed.

A detailed list of all hardware and software, including the 3-year price, is provided in the Executive Summary at the front of this report. The price quotations are included in Appendix A.

Availability Dates

The committed delivery date for general availability (availability date) of products used in the price calculations must be reported. When the priced system includes products with different availability dates, availability date reported on the Executive Summary must be the date by which all components are committed to being available. The Full Disclosure Report must report availability dates individually for at least each of the categories for which a pricing subtotal must be provided (see Clause 7.3.1.3).

The Total System Availability Date is April 16, 2014.

Country-Specific Pricing

Additional Clause 7 related items may be included in the Full Disclosure Report for each country-specific priced configuration. Country-specific pricing is subject to Clause 7.1.7.

The configuration is priced for the United States of America.
Clause 8 – Full Disclosure

8.1 Supporting Files Index Table

An index for all files included in the supporting files archive as required by Clauses 8.3.2 must be provided in the report.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
<th>Pathname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause 1</td>
<td>OS and DB settings</td>
<td>SupportingFilesArchive\Clause1</td>
</tr>
<tr>
<td>Clause 2</td>
<td>Qualification Queries and Output</td>
<td>SupportingFilesArchive\Clause2</td>
</tr>
<tr>
<td>Clause 3</td>
<td>ACID scripts and output</td>
<td>SupportingFilesArchive\Clause3</td>
</tr>
<tr>
<td>Clause 4</td>
<td>DB load scripts</td>
<td>SupportingFilesArchive\Clause4</td>
</tr>
<tr>
<td>Clause 5</td>
<td>Queries and output for measured runs</td>
<td>SupportingFilesArchive\Clause5</td>
</tr>
<tr>
<td>Clause 6</td>
<td>Implementation code for measured runs</td>
<td>SupportingFilesArchive\Clause6</td>
</tr>
<tr>
<td>Clause 8</td>
<td>RFs source and params</td>
<td>SupportingFilesArchive\Clause8</td>
</tr>
</tbody>
</table>
Clause 9 – Audit Related Items

Auditor

The auditor’s agency name, address, phone number, and Attestation letter with a brief audit summary report indicating compliance must be included in the Full Disclosure Report. A statement should be included specifying who to contact in order to obtain further information regarding the audit process.

This implementation of the TPC Benchmark H was audited by Francois Raab of Infosizing. Further information regarding the audit process may be obtained from:

InfoSizing
531 Crystal Hills Blvd.
Manitou Springs, CO 80829
Telephone: (719) 473-7555
Web address: www.sizing.com

For a copy of this disclosure, go to www.tpc.org.

Attestation Letter

The auditor’s Attestation Letter is on the next two pages.
Benchmark sponsor: Vinay Kulkarni
IBM System x Performance Engineer
3600 Carillon Point
Kirkland, WA 98033

April 16, 2014

I verified the TPC Benchmark H (TPC-H™ v2.16.0) performance of the following configuration:

Platform: IBM System x 3850 X6
Database Manager: Microsoft SQL Server 2014 Enterprise Edition
Other Software: n/a

The results were:

Performance Metric 519,976.1 QphH@1,000GB
TPC-H Power 695,445.5
TPC-H Throughput 388,779.8
Database Load Time 06h 48m 50s

<table>
<thead>
<tr>
<th>Server</th>
<th>IBM System x 3850 X6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUs</td>
<td>4 x Intel Xeon Processor E7-4890 v2 (2.8 GHz, 37.5MB Cache)</td>
</tr>
<tr>
<td>Memory Disks</td>
<td>1,536 GB</td>
</tr>
<tr>
<td></td>
<td>Qty</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

In my opinion, these performance results were produced in compliance with the TPC requirements for the benchmark.

The following verification items were given special attention:

- The database records were defined with the proper layout and size
- The database population was generated using DBGen
- The database was properly scaled to 1,000GB and populated accordingly
The compliance of the database auxiliary data structures was verified
The database load time was correctly measured and reported
The required ACID properties were verified and met
The query input variables were generated by QGen
The query text was produced using minor modifications and no query variant
The execution of the queries against the SF1 database produced compliant answers
A compliant implementation specific layer was used to drive the tests
The throughput tests involved 7 query streams
The ratio between the longest and the shortest query was such that no query timings were adjusted
The execution times for queries and refresh functions were correctly measured and reported
The repeatability of the measured results was verified
The system pricing was verified for major components and maintenance
The major pages from the FDR were verified for accuracy

Additional Audit Notes:

None.

Respectfully Yours,

François Raab, President
Appendix A: Price Quotes
IBM Corporation
Vinay Kulkarni
3600 Carillon Point
Kirkland, WA 98033

Here is the information you requested regarding pricing for several Microsoft products to be used in conjunction with your TPC-H benchmark testing.

All pricing shown is in US Dollars ($).

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Unit Price</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
</table>
| 7JQ-00750 | **SQL Server 2014 Enterprise Edition**
2 Core License
Open Program - Level C | $13,472.50 | 30 | $404,175.00 |
| P73-06284 | **Windows Server 2012 R2 Standard Edition**
2 Processor License
Open Program - Level C
Unit Price reflects a 34% discount from the retail unit price of $1,123. | $735.00 | 2 | $1,470.00 |
| R18-04280 | **Windows Server 2012 R2 Client Access License**
1License
Open Program - Level C
Unit Price reflects a 30% discount from the retail unit price of $35. | $24.36 | 70 | $1,705.20 |

Support

| N/A | **Microsoft Problem Resolution Services**
Professional Support (1 Incident). | $259.00 | 1 | $259.00 |

Defect support is included in the purchase price. Additional support is available from Microsoft PSS on an incident by incident basis at $259.00 call.

This quote is valid for the next 90 days.
Reference ID: TPCH_qhtplylGYLKTVUKf88473gty_2014_vkbnr
1 Item(s) in your shopping cart: $69.99

Newegg Standard Shipping Service

Hanns-G HL161ABB Black 16" 16ms Widescreen LED Backlight LCD Monitor

Monitor Standard Return Policy

IN STOCK!!!

$69.99

Save: 22.22%

Protect Your Investment

Will Call Service

Your products can be picked up from multiple locations.

You will be notified by E-mail once your products are ready for pick-up.

Use Will-Call

Shipping Options

Zip Code

Update

Choose a delivery method

SAVE MONEY WITH SUPER EGGSAVER

"Super EggSaver" is a low-cost 4-7 business day shipping method. Learn more.

☐ APO/FPO-Military ONLY

☞ Super EggSaver (4-7 Business Days)

☐ Newegg 3 Business Days

☐ Newegg 2 Business Days

☐ Newegg Next Business Day

FREE 2-Day Shipping learn more

Apply Promo Codes

Promo codes have usage limitations that require you to enter your email address to enable Promo Codes.

E-Mail Address

Enter

We value your privacy: You won't get any emails from us unless you place an order or sign up for our newsletter.

Redeem Newegg Gift Cards / Google Offer Code

Card Number

Security Code

Apply

Redeem Eggpoints

Find My EggPoints

Grand Total:* $69.99

* Above total does not include shipping or taxes. Please input zip code to calculate your grand total.
Having problems with your cart?
Check FAQ for help or try emptying your cart to start over.

CONTINUE SHOPPING SECURE CHECKOUT

Or Checkout with:

[Logos for PayPal, V.me, and MasterPass]

Policy & Agreement | Privacy Policy © 2000-2014 Newegg Inc. All rights reserved.